
The All Nearest Smaller Values Problem Revisited in Practice,
Parallel and External Memory

Nodari Sitchinava

University of Hawaii at Mānoa
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ABSTRACT

We present a thorough investigation of the All Nearest Smaller
Values (ANSV) problem from a practical perspective. The ANSV

problem is defined as follows: given an array 𝐴 consisting of 𝑛

values, for each entry 𝐴𝑖 compute the largest index 𝑙 < 𝑖 and the

smallest index 𝑟 > 𝑖 such that 𝐴𝑖 > 𝐴𝑙 and 𝐴𝑖 > 𝐴𝑟 , i.e., the in-

dices of the nearest smaller values to the left and to the right of 𝐴𝑖 .

The ANSV problem was solved by Berkman, Schieber, and Vishkin

[J. Algorithms, 1993] in the PRAM model. Their solution in the

CREW PRAM model, which we will refer to as the BSV algorithm,

achieves optimal O(𝑛) work and O(log𝑛) span. Until now, the BSV
algorithm has been perceived as too complicated for practical use,

and we are not aware of any publicly available implementations.

Instead, the best existing practical solution to the ANSV problem is

the implementation by Shun and Zhao presented at DCC’13. They

implemented a simpler O(𝑛 log𝑛)-work algorithm with an addi-

tional heuristic first proposed by Blelloch and Shun at ALENEX’11.

We refer to this implementation as the BSZ algorithm. In this paper,

we implement the original BSV algorithm and demonstrate its prac-

tical efficiency. Despite its perceived complexity, our results show

that its performance is comparable to the BSZ algorithm. We also

present the first theoretical analysis of the heuristic implemented

in the BSZ algorithm and show that it provides a tunable trade-off

between optimal work and optimal span. In particular, we show

that it achieves O
(
𝑛

(
1 + log𝑛

𝑘

))
work and O

(
𝑘 (1 + log

𝑛
𝑘
)
)
span,

for any integer parameter 1 ≤ 𝑘 ≤ 𝑛. Thus, for 𝑘 = Θ(log𝑛), the
BSZ algorithm can be made to be work-optimal, albeit at the ex-

pense of increased span compared to BSV. Our discussion includes

a detailed examination of different input types, particularly high-

lighting that for random inputs, the low expected distance between

values and their nearest smaller values renders simple algorithms

efficient. Finally, we analyze the input/output (I/O) complexities of

the BSV algorithm.

CCS CONCEPTS

• Theory of computation→ Shared memory algorithms.

Work supported by Independent Research Fund Denmark grant 9131-00113B and

National Science Foundation grant CCF-1911245.

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivs International 4.0 License.

SPAA ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0416-1/24/06.

https://doi.org/10.1145/3626183.3659979

KEYWORDS

Algorithm analysis, parallel algorithms, external memory, PRAM,

algorithm engineering, all nearest smaller values problem, ANSV

ACM Reference Format:

Nodari Sitchinava and Rolf Svenning. 2024. The All Nearest Smaller Values

Problem Revisited in Practice, Parallel and External Memory. In Proceedings
of the 36th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3626183.3659979

1 INTRODUCTION

1.1 The All Nearest Smaller Values problem

In the All Nearest Smaller Values (ANSV) problem, we are given an

array 𝐴 consisting of 𝑛 totally ordered elements 𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛 ,

referred to as the values. The objective is to compute for each value

the indices of the nearest smaller values to its left and right. Specif-

ically, for a given value 𝐴𝑖 , find the index 𝑙 of the nearest smaller

value 𝐴𝑙 on its left. This index is 𝑙 = max

{
𝑗 |𝐴 𝑗 < 𝐴𝑖 ∧ 𝑗 < 𝑖

}
,

where𝐴𝑙 is termed the left match of𝐴𝑖 . Similarly, the nearest smaller

value on the right, or the right match, should also be computed.

The output of the problem is two arrays, 𝐿 and 𝑅, each of size

𝑛. These arrays store the indices of each element’s left and right

matches in 𝐴, respectively. For simplicity, we extend 𝐴 such that

𝐴0 = 𝐴𝑛+1 = −∞, and let the index 0 indicate that a value has no

left match, and the index 𝑛 + 1 that a value has no right match. All

entries of 𝐿 are initially 0, and all entries of 𝑅 are initially 𝑛 + 1.

As is standard, we assume without loss of generality that all

values in 𝐴 are distinct. The case with equal values can be handled

by simple modifications of the input and running the algorithm

twice, once for left matches and once for right matches. We adopt

the same notation as in [6] such that 𝑙 (𝐴𝑖 ) and 𝑟 (𝐴𝑖 ) denote the
indices of the left and right match of 𝐴𝑖 , respectively.

ANSV is a fundamental problem since many problems directly

reduce to an ANSV computation or ANSV can be used as an impor-

tant subroutine. A non-exhaustive list of such problems is: finding

the min/max among 𝑛 elements, merging sorted lists, constructing

Cartesian trees [23], monotone polygon triangulation, range min-

imum queries, parenthesis matching, binary tree reconstruction.

See [4–6] for more details.

To highlight one example, consider merging two sorted lists,

𝑎 = 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛 and 𝑏 = 𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑚 . This task directly

reduces to computing the ANSV on 𝑎◦rev(𝑏), where rev(𝑏) denotes
the reverse of list 𝑏, and ◦ represents concatenation. Specifically,
the position of each 𝑎𝑖 and 𝑏 𝑗 in the merged list can be determined

as 𝑛 +𝑚 − 𝑟 (𝑎𝑖 ) + 𝑖 + 1 and 𝑙 (𝑏 𝑗 ) + 𝑗 + 1, respectively, where 𝑟 (𝑎𝑖 )
and 𝑙 (𝑏 𝑗 ) are the indices of the right and left matches for 𝑎𝑖 and 𝑏 𝑗
in 𝑎 ◦ rev(𝑏).

https://orcid.org/0000-0001-8876-4846
https://orcid.org/0000-0002-9903-4651
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3626183.3659979
https://doi.org/10.1145/3626183.3659979


SPAA ’24, June 17–21, 2024, Nantes, France Nodari Sitchinava and Rolf Svenning

1.2 Models of computation

For analyzing algorithms, we focus on the CREW PRAM [14, 15]

and the external memory (EM) [1] models of computation and the

only allowed operations on values are comparisons. The CREW

PRAM model is characterized by multiple processors operating

synchronously on shared memory with concurrent reads (CR) and

exclusive writes (EW) capabilities. Algorithms in this model are an-

alyzed in terms of work – the total number of operations performed

by all processors, and span – the depth of the longest computation

path using an infinite number of processors. We adopt the nota-

tion 𝑇𝑃 to denote the time it takes to execute an algorithm on a

𝑃-processor CREW PRAM. Then work and span correspond to 𝑇1

and 𝑇∞, respectively. Analyzing just work and span is sufficient

because Brent’s scheduling principle [9] can then be used to obtain

the runtime 𝑇𝑃 for an arbitrary number of processors 𝑃 ≥ 1 as

𝑇𝑃 = O
(
𝑇1

𝑃
+𝑇∞

)
.

The EM model by Aggarwal and Vitter [1] (also known as the

ideal-cache model [11]1) is characterized by a processor with an

internal memory of size 𝑀 and an infinite external memory. Ini-

tially, the input of size 𝑛 is placed in ⌈𝑛
𝐵
⌉ consecutive blocks of 𝐵

consecutive elements in the external memory. Each processor can

perform input/output (I/O) operations to move a block of elements

between the external and internal memories and data must be in

the internal memory to perform any computation on it. The cost in

this model is the number of I/Os performed. If an algorithm does

not use the parameters𝑀 and 𝐵 in its description, it is referred to

as being cache-oblivious [11].
Arge et al. [2] extended the EM model to the parallel setting. The

Parallel External Memory (PEM) [2] model consists of 𝑃 processors,

each containing internal memory of size𝑀 and sharing the external

memory. The I/Os are performed in parallel, with a parallel I/O
consisting of up to 𝑃 processors transferring one block in each time

step. Since no equivalent to Brent’s scheduling principle exists in

the PEM model, analysis of parallel I/Os must be performed for a

specific value of 𝑃 .

1.3 Previous results

Sequentially, the ANSV problem can be solved in linear time and

O
(
𝑛
𝐵

)
I/Os cache-obliviously using a stack to push elements from

left to right. Before each element 𝐴𝑖 is pushed on the stack, pop

all elements larger than 𝐴𝑖 from the stack. The remaining element

at the top of the stack is smaller than 𝐴𝑖 and is the left match of

𝐴𝑖 . Right matches can be found similarly. This algorithm behaves

exactly like the stack-based algorithm in [12] for constructing Carte-

sian trees. Instead of a stack, a simple implementation using arrays

can also be employed [3].

We call the stack/array-based algorithm SEQ. These approaches
are based on the following basic observation.

1
The main difference between the EM and the ideal-cache models is that in the ideal-

cache model the transfers between the internal and external memories are delegated to

a separate omniscient paging algorithm. Therefore, the paging algorithm can optimize

the I/Os based on its knowledge of future accesses and performs no worse than any

explicitly stated block transfer algorithm in the EM model. The well-known resource-

augmentation result [11] states that any reasonable automated paging algorithm, e.g.,

the one that evicts only the least-recently-used (LRU) block from the internal memory,

with internal memory size of 2𝑀 performs asymptotically similarly to the omniscient

paging algorithm with internal memory of size of𝑀 .

Observation 1. The matches in the ANSV problem are non-
overlapping. That is, for any value𝐴𝑖 with a right match 𝑟𝑖 , there is no
other value 𝐴 𝑗 for 𝑗 < 𝑖 with a right match 𝑟 𝑗 , such that 𝑖 < 𝑟 𝑗 < 𝑟𝑖
(likewise for the left match).

In the parallel setting, Berkman, Schieber, and Vishkin (BSV) [6]

presented an optimal O(𝑛) work and O(log log𝑛) span algorithm

in CRCW PRAM and an optimal O(𝑛) work and O(log𝑛) span
algorithm in CREW PRAM. The latter is our focus and we call this

the BSV algorithm. In the literature, their work-efficient algorithm is

perceived as being "very complicated" [8, 19]. They also presented a

much simpler O(𝑛 log𝑛) work and O(log𝑛) span algorithm which

we call the work-inefficient BSV algorithm. The algorithm proceeds

in two stages, first, it constructs in O(𝑛) work and O(log𝑛) span
(see [6] section 3.2) a balanced binary tree with the values 𝐴 stored

in its leaves in the original order. Each internal node then takes the

value of the minimum of its children. We call this a min binary tree.
Second, to find the left match of 𝐴𝑖 it follows the path towards the

root until a left child has a value smaller than𝐴𝑖 . From that child, it

follows a path towards the leaves always choosing the right child if

its value is smaller than𝐴𝑖 . It is straightforward to see that this finds

the left match 𝑙 (𝐴𝑖 ) in O(log𝑛) time and symmetrically the same

for right matches. This algorithm was implemented for parallel

Lempel-Ziv factorization by Shun and Zhao [20] and Cartesian tree

construction by Blelloch and Shun [8, 19] where ANSV was used as

a subroutine. Interestingly, Blelloch and Shun added a surprisingly

effective heuristic, and in [8] they write:

"... we note that the ANSV only takes about 10% of the
total time even though it is an O(𝑛 log𝑛) algorithm.
This is likely due to the optimization discussed above."

In their paper, the role of the heuristic was not emphasized as a

critical element, and its operational details were somewhat unclear

to us.

However, this heuristic is implemented in the publicly available

code [21], and we provide an in-depth explanation of it in Section

1.4. In this paper, we analyze the heuristic and show that it results

in a provably better work than O(𝑛 log𝑛) and provides a tunable

trade-off between work and span.

Generally, the BSV algorithm generalizes well to parallel models

other than PRAM and has been adapted in various other models. For

example, it has been used to solve ANSV in the bulk synchronous

parallel model [13] and a formal derivation using Coq [18]. It has

been implemented in the Distributed Memory models, both in the-

ory [16] and in practice using MPI [10]. In the hypercube model, the

ANSV was solved in optimal O(log𝑛) time with 𝑛 processors [17].

1.4 The BSZ algorithm

In this section, we describe the BSZ algorithm and the heuristic in

detail. We begin with the heuristic which is based on an integer

parameter 1 ≤ 𝑘 ≤ 𝑛 and modifies the simple O(𝑛 log𝑛) work-
inefficient algorithm [6] in three ways. :

H1 Partition the input into ⌈𝑛
𝑘
⌉ blocks of size 𝑘 (except the

last block which may not be full). For each block run the

sequential ANSV algorithm to find all matches within the

block, we call these local matches.

H2 When using the min-binary tree to search for a match, per-

form an exponential search in the direction of the match,
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to find it in O(log𝑑) time, where 𝑑 is the distance in the in-

put to the match. To do this, in addition to following parent

pointers also move horizontally in the tree. In the code, they

facilitate this by implementing the binary tree as an array

of arrays, where the secondary arrays store the nodes at a

given height.

H3 For each block, the elements without a right match form

an increasing sequence (Observations 1a and 1b in [6]). In-

stead of finding the remaining right matches in parallel, do

so sequentially from right to left. When performing an ex-

ponential search for the right match, start from where the

previous search ended. Symmetrically for the left matches.

In short and focusing on the right matches, computing the local

matches in each block leaves an increasing sequence of 1 ≤ 𝑑 ≤ 𝑘

unmatched values at indices𝑢1, 𝑢2, 𝑢3, ..., 𝑢𝑑 . Thus, proceeding from

right to left, for each pair of adjacent unmatched values 𝐴𝑢𝑖−1
and

𝐴𝑢𝑖 , the search in the min binary tree for the match of 𝐴𝑢𝑖−1
can

start from where 𝐴𝑢𝑖 found its match.

The BSZ algorithm works on a global array 𝐴 of 𝑛 values and

stores the right matches in an array 𝑅 of 𝑛 matches, all initialized to

𝑛+1 (we omit the left matches for simplicity). It is supplied with the

hyperparameter 𝑘 and has access to a min binary tree𝑇 on𝐴, which

can be built in O(𝑛) work and O(log𝑛) span. We adopt the Python

notation for subarrays where𝐴[𝑥 : 𝑦] denotes [𝐴𝑖 | 𝑥 ≤ 𝑖 < 𝑦] and
the notation 𝐴𝑖 = 𝐴[(𝑖 − 1)𝑘 + 1 : min(𝑖𝑘 , 𝑛) + 1] for the 𝑖th block

of 𝐴. The BSZ algorithm is described in pseudocode as Algorithm 1.

Algorithm 1: The BSZ algorithm for ANSV

Output: Computes the right matches of 𝐴 and stores them

in 𝑅

1 for 𝑖 = 1 to ⌈𝑛/𝑘⌉ in parallel do

2 Compute local matches in 𝐴𝑖
using the SEQ algorithm

and store them in 𝑅𝑖

3 𝑠𝑡𝑎𝑟𝑡 ←− min(𝑖𝑘 , 𝑛) + 1

4 for 𝑗 = min(𝑖𝑘 , 𝑛) down to (𝑖 − 1)𝑘 + 1 do

5 if 𝑅 𝑗 == 𝑛 + 1 then

6 𝑅 𝑗 ←−𝑚𝑎𝑡𝑐ℎ𝑅𝑖𝑔ℎ𝑡 (𝑠𝑡𝑎𝑟𝑡, 𝑗) // traverses 𝑇

from index 𝑠𝑡𝑎𝑟𝑡 for the match of 𝐴 𝑗

7 𝑠𝑡𝑎𝑟𝑡 ←− 𝑅 𝑗

1.5 The BSV algorithm

This section presents an overview of the BSV algorithm as described

in [6]. The algorithm is described in pseudocode as Algorithm 2.

Like the BSZ algorithm, the BSV algorithm operates on global ar-

rays 𝐴 and 𝑅, each of size 𝑛, representing values and their right

matches, respectively. For simplicity, we omit left matches. The

algorithm uses a min binary tree 𝑇 based on 𝐴 and is supplied

with a hyperparameter 𝑘 . Initially, the algorithm computes the

local matches within each block 𝐴𝑖
. It also determines the index

𝑖𝑚 of the smallest value 𝐴𝑖𝑚 in each block, along with its left and

right matches 𝑙 (𝐴𝑖𝑚 ) and 𝑟 (𝐴𝑖𝑚 ), respectively. This latter is done
by traversing the min binary tree 𝑇 . The results are stored in ar-

ray 𝑀 . While using 𝑀 is not mandatory, it prevents redundant

searches in the tree. Then, for each block, the algorithm identifies

the boundaries of a merging problem in constant time based on

the contents of 𝑀 (refer to Lemmas 3.3 and 3.4 in [6] for details).

For 1 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑 ≤ 𝑛 the two subsequences 𝐴[𝑎 : 𝑏] and
𝐴[𝑐 : 𝑑] that are merged may be far apart. Through this merging

process, the algorithm identifies all the right matches for 𝐴[𝑎 : 𝑏]
and the left matches for 𝐴[𝑐 : 𝑑]. Note that each block defines at

most two merging problems, leading to a total of O
(
𝑛
𝑘

)
merging

problems. By setting 𝑘 = Θ(log𝑛), traversing the tree a constant

number of times for each block results in Θ(𝑛) work. Similarly,

computing local matches within a group or performing a merge

can be accomplished in Θ(𝑘) = Θ(log𝑛) time.

Algorithm 2: The BSV algorithm for ANSV

Output: Computes the right matches of 𝐴 and stores them

in 𝑅

1 𝑀 ←− Array of size ⌈𝑛/𝑘⌉ // For storing information

to identify merging problems

2 for 𝑖 = 1 to ⌈𝑛/𝑘⌉ in parallel do
3 Compute local matches in 𝐴𝑖

using the SEQ algorithm

and store them in 𝑅𝑖

4 𝑖𝑚 ←− index of min value in 𝐴𝑖

5 𝑀 [𝑖] ←−
{
𝑖𝑚, 𝑙 (𝐴𝑖𝑚 ), 𝑟 (𝐴𝑖𝑚 )

}
// Uses 𝑇

6 for 𝑖 = 1 to ⌈𝑛/𝑘⌉ in parallel do
7 (𝑎, 𝑏, 𝑐, 𝑑) ←−𝑚𝑒𝑟𝑔𝑒𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 (𝑖) // Computes

boundaries of a merging problem. Uses 𝑀

instead of searching in the tree 𝑇

8 𝑚𝑒𝑟𝑔𝑒 (𝑎, 𝑏, 𝑐, 𝑑) // Computes nonlocal matches by

merging 𝐴[𝑎 : 𝑏] and 𝐴[𝑐 : 𝑑]

2 OUR RESULTS

We give the first theoretical analysis of the heuristic used in the

BSZ algorithm which improves on the simple O(𝑛 log𝑛) work and

O(log𝑛) span algorithm in [6]. We show that it provides a tunable

trade-off between optimal work and optimal span for the hyper-

parameter 1 ≤ 𝑘 ≤ 𝑛. In particular, we show that it achieves

O
(
𝑛

(
1 + log𝑛

𝑘

))
work and O

(
𝑘 (1 + log

𝑛
𝑘
)
)
span, for any integer

1 ≤ 𝑘 ≤ 𝑛. Note that setting 𝑘 = 1 corresponds to the work-

inefficient BSV algorithm; setting 𝑘 = Θ(log𝑛) achieves linear
work, matching the work of the BSV algorithm, but resulting in

the O
(
log𝑛 log

𝑛
𝑘

)
span; and setting 𝑘 = 𝑛 corresponds to the SEQ

algorithm.

Second, we present the first implementation of the BSV algorithm

for shared memory machines, to our knowledge. Although the BSV

algorithm has been perceived as being theoretically complicated,

our implementation is a simple∼175 line C++ implementation, with

∼90 lines reused directly from the publicly available ∼120 line im-

plementation of the BSZ algorithm from [20]. Our implementation

is comparable with the current state-of-the-art BSZ implementa-

tion and achieves parallel speedup of up to 13.7 on 24 cores (48

threads with hyper-threading). We also verify experimentally that

the heuristic introduced in the BSZ algorithm significantly speeds

up the algorithm and reduces the work to O(𝑛) for large enough 𝑘 .
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Third, we show that when each value is drawn i.i.d. from a dis-

crete distribution on a totally ordered set of size𝑚 the expected

distance from a value to its match is at most𝐻𝑚 – the𝑚th Harmonic

number. Thus, these random inputs are not hard instances for this

problem, as even the trivial O
(
𝑛2

)
solution for ANSV is expected to

achieve O(𝑛 log𝑛) work and O(log𝑛) span if𝑚 = O(𝑝𝑜𝑙𝑦 (𝑛)). Sim-

ilarly, the work-inefficient BSV algorithm achieves O(𝑛 log log𝑛)
work and O(log log𝑛) span.

Finally, we present the first I/O complexity analysis of the BSV

algorithm in the (P)EM model. As with many other parallel models,

the BSV algorithm generalizes well in the PEM model too and

we show that simple modifications to the BSV algorithm yield

O
(
𝑛
𝑃𝐵
+ log𝐵 𝑛

)
parallel I/Os for any positive integer 𝑃 ≥ 1 of

processors. Finally, we show that the array-based version like the

stack-based version of the SEQ algorithm uses O(𝑛/𝐵) I/Os cache-
obliviously.

3 ANALYZING THE BSZ ALGORITHM

In this section, we analyze the heuristic introduced in the BSZ

algorithm and show that it provides a tunable trade-off between

work and span as described by the following Theorem.

Theorem 1. For an input of size𝑛 and any integer hyperparameter

1 ≤ 𝑘 ≤ 𝑛, the BSZ algorithm achieves O
(
𝑛

(
1 + log𝑛

𝑘

))
work and

O
(
𝑘 (1 + log

𝑛
𝑘
)
)
span.

We use the terminology that when a value finds its match in the

same block as itself we call it a local match. Likewise, when a value

finds its match in a different block than itself we call it a nonlocal
match. We begin by analyzing the span.

Lemma 1. For an input of size 𝑛 and any integer hyperparameter

1 ≤ 𝑘 ≤ 𝑛, the span of the BSZ algorithm is O
(
𝑘 (1 + log

𝑛
𝑘
)
)
.

Proof of Lemma 1. The algorithm has three parts. First, con-

structing the min binary tree takes O(log𝑛) time. Second, finding

the local matches in a block takes O(𝑘) time. Third, using the

heuristic to sequentially find the nonlocal left matches in a block

takes O
(∑𝑘

𝑖=1
(1 + log𝑛𝑖 )

)
time where 𝑛𝑖 denotes the distance be-

tween the (𝑖 − 1)th and 𝑖th match and the plus one accounts for

any case 𝑛𝑖 ≤ 1.
2
The sum is then upper bounded as follows:∑𝑘

𝑖=1
(1 + log𝑛𝑖 ) ≤ 𝑘 + ∑𝑘

𝑖=1
log

𝑛−𝑘
𝑘
≤ 𝑘

(
1 + log

𝑛
𝑘

)
. Adding all

parts together gives O
(
𝑘

(
1 + log

𝑛
𝑘

)
+ log𝑛

)
= O

(
𝑘 (1 + log

𝑛
𝑘
)
)

span. □

Next, we will prove the following lemma, which bounds the

work𝑊𝐵𝑆𝑍 of the BSZ algorithm:

Lemma 2. Let𝑊𝐵𝑆𝑍 be the work of the BSZ algorithm on an input

of size 𝑛 using the hyperparameter 𝑘 . Then𝑊𝐵𝑆𝑍 = O
(
𝑛

(
1 + log𝑛

𝑘

))
.

To prove Lemma 2, we will focus on a slightly different recursive

algorithm, which we call REC, for the ANSV problem. We stress

that this algorithm is only used for the analysis of the work of the

BSZ algorithm. The idea is that this algorithm is simpler to analyze

2
We adopt the convention that log 0 = 0.

and uses about the same work as the BSZ algorithm. Like the BSZ

algorithm, the REC algorithm operates on global arrays 𝐴 and 𝑅 of

size 𝑛, with 𝑅 being initialized to 𝑛 + 1, storing the values and right

matches, respectively (left matches are omitted for simplicity). It

also uses a min binary tree 𝑇 on 𝐴, which can be built using O(𝑛)
work, and is supplied a hyperparameter 𝑘 . The REC algorithm is

described in pseudocode as Algorithm 3, and its behavior on a

specific input is exemplified in Figure 1.

Algorithm 3: The REC(𝑥,𝑦) algorithm for ANSV

Input: Indices 𝑥 ≤ 𝑦

Output: Computes the right matches of values 𝐴[𝑥 : 𝑦] and
stores them in 𝑅 [𝑥 : 𝑦]

1 if 𝑥 == 𝑦 then return ;

2 𝑥𝑘 ←− min(𝑥 + 𝑘 , 𝑦)
3 Compute local matches in 𝐴[𝑥 : 𝑥𝑘 ] using the SEQ

algorithm and store them in 𝑅 [𝑥 : 𝑥𝑘 ]
4 𝑠𝑡𝑎𝑟𝑡 ←− 𝑥𝑘

5 for 𝑖 = 𝑥𝑘 − 1 down to 𝑥 do

6 if 𝑅𝑖 == 𝑛 + 1 then

7 𝑅𝑖 ←−𝑚𝑎𝑡𝑐ℎ𝑅𝑖𝑔ℎ𝑡 (𝑠𝑡𝑎𝑟𝑡, 𝑖) // traverses 𝑇 from

index 𝑠𝑡𝑎𝑟𝑡 for the match 𝑅𝑖 of 𝐴𝑖

8 REC(𝑠𝑡𝑎𝑟𝑡, 𝑅𝑖 )

9 𝑠𝑡𝑎𝑟𝑡 ←− 𝑅𝑖

10 REC(𝑠𝑡𝑎𝑟𝑡,𝑦)

To solve the ANSV problem the initial call is REC(1, 𝑛 + 1). The
REC algorithm, guided by the heuristics, identifies disjoint parts

of 𝐴 that can be solved independently. To do so, for the first block

of 𝑘 values, it runs the SEQ algorithm. Among these, some will

find their match locally within the block. It uses the min binary

tree 𝑇 from right to left for the remaining matches using the same

heuristics (H2 and H3) as the BSZ algorithm. The indices of these

nonlocal matches partition the remaining 𝑛 − 𝑘 values into at most

𝑘 + 1 disjoint subproblems which can be solved independently. The

following Lemma makes that precise.

Lemma 3. For any call to REC(𝑥,𝑦), the right matches of all values
in 𝐴[𝑥 : 𝑦] are in 𝐴[𝑥 : 𝑦 + 1].

Proof. Follows directly from Observation 1 that all matches are

non-overlapping. □

To bound thework of the BSZ algorithm using the REC algorithm,

we will first prove Lemma 4, which established that they use about

the same work.

Lemma 4. Let𝑊𝐵𝑆𝑍 and𝑊𝑅𝐸𝐶 be the work of the BSZ and REC
algorithms for a particular input of size 𝑛 using the same value for

the hyperparameter 𝑘 . Then𝑊𝐵𝑆𝑍 = O
(
𝑊𝑅𝐸𝐶 + 𝑛

(
1 + log𝑛

𝑘

))
.

The converse (swapping𝑊𝐵𝑆𝑍 and𝑊𝑅𝐸𝐶 ) also holds, but this

direction is not required for our analysis.

Next, we will bound the work of the REC algorithm. For clarity

of exposition, let𝑊𝑅𝐸𝐶 = O(𝑇 (𝑛)), i.e., denote an upper bound on

the work of the recursive algorithm on an input of size 𝑛, excluding
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7 91 5 30 56 42 77 91 37 35 41 31 68 53 83 97 55 42 79 63 27 6 3 7 44 91 2

SEQ 𝑆1 𝑆2 𝑆3 𝑆4

Figure 1: The REC algorithm begins by running the SEQ algorithm on the first 𝑘 = 6 values (line 3), finding local matches for

7, 91, and 56. The other three values, 5, 30, and 42, have nonlocal matches, indicated by arrows, which are found using the min

binary tree 𝑇 . These values partition the remaining input into four independent subproblems: 𝑆1, 𝑆2, 𝑆3, and 𝑆4. For instance,

the recursive call for 𝑆1 is REC(7, 10) (line 8). For the last subproblem 𝑆4, the recursive call is REC(23, 28) (line 10).

the construction of the min binary tree. Then, 𝑇 (𝑛) is defined by

the following recursion:

𝑇 (𝑛) =
{
𝑘 +max

(∑𝑘+1
𝑖=1

𝑇 (𝑛𝑖 ) +
∑𝑘
𝑖=1

log(𝑛𝑖 )
)

𝑛 > 𝑘

𝑛 𝑛 ≤ 𝑘,

where the maximum is defined over all possible partitions of the

input into 𝑘 + 1 subproblems, each of size 𝑛𝑖 , such that

∑𝑘+1
𝑖=1

𝑛𝑖 =

𝑛 − 𝑘 (because the 𝑘 values that define the partitions are already

matched), and the sum of logarithmic terms comes from performing

the non-local searches in the min tree using heuristicH2. Lemma 5

bounds 𝑇 (𝑛) and demonstrates that 𝑇 (𝑛) decreases as the block
size 𝑘 increases:

Lemma 5. 𝑇 (𝑛) = O
(
𝑛

(
1 + log𝑛

𝑘

))
.

Together, Lemmas 4 and 5 will imply the bound on the work of

the BSZ algorithm as stated in Lemma 2.

We first prove Lemma 4, which shows that the work of the BSZ

and REC algorithms is about the same. We fix an input 𝐴 of size 𝑛

and focus solely on the right matches, as the behavior of the left

matches is symmetric. The analysis begins by splitting the work

of the BSZ and REC algorithms into two parts. The first part is

constructing the binary tree and computing local matches in each

block. The second part is finding the nonlocal match of each element.

Thus,𝑊𝐵𝑆𝑍 = Θ
(
𝑛 +∑𝑛

𝑖=1
𝑧𝑖

)
and𝑊𝑅𝐸𝐶 = Θ

(
𝑛 +∑𝑛

𝑖=1
𝑟𝑖
)
, where

𝑧𝑖 and 𝑟𝑖 denote the number of nodes visited in the min binary

tree when finding the 𝑖th nonlocal right match of value 𝐴𝑖 by the

BSZ and REC algorithms, respectively. The count is 0 if the match

is found locally or the search starts from the index of the match,

and it is at least 1 otherwise. At a high level, our strategy will

be to bound the difference between

∑𝑛
𝑖=1

𝑧𝑖 and
∑𝑛
𝑖=1

𝑟𝑖 for each

block of size 𝑘 . More precisely, for the BSZ algorithm, consider

blocks of indices 𝑍 =

[
𝑍 1, 𝑍 2, 𝑍 3, ..., 𝑍 ⌈𝑛/𝑘 ⌉

]
, each corresponding

to indices where local matches are computed on line 2. That is, 𝑍 𝑖 =

[ 𝑗 | (𝑖 − 1)𝑘 + 1 ≤ 𝑗 < min(𝑖𝑘 , 𝑛) + 1], noting that all blocks are of
size 𝑘 , except possibly the last one. For the REC algorithm, consider

𝑚 < 𝑛 blocks of indices 𝑅 =
[
𝑅1, 𝑅2, 𝑅3, ..., 𝑅𝑚

]
, where each 𝑅𝑖

corresponds to indices where local matches are computed on line 3.

Specifically, if a recursive call REC(x, y) computes local matches

in 𝐴[𝑥 : 𝑥𝑘 ] on line 3, it yields a block of indices [ 𝑗 | 𝑥 ≤ 𝑗 < 𝑥𝑘 ].
Each block 𝑅𝑖 has a maximum size of 𝑘 .

Proof of Lemma 4. We begin by showing that

���∑𝑗 ∈𝑍 𝑖 𝑧 𝑗 − 𝑟 𝑗
��� =

O(𝑘 + log𝑛) for any 1 ≤ 𝑖 ≤ ⌈𝑛/𝑘⌉. Consider running the BSZ

algorithm on a fixed input resulting in𝑍 𝑖
. Also consider running the

REC algorithm on the same input and focus on the subset of 𝑐 ≤ 𝑘

blocks

[
𝑅𝑖1 , 𝑅𝑖2 , 𝑅𝑖3 , ..., 𝑅𝑖𝑐

]
=

[
𝑅ℓ | 𝑍 𝑖 ∩ 𝑅ℓ ≠ ∅ ∧ 1 ≤ ℓ ≤ 𝑚

]
that

overlap with 𝑍 𝑖
.

Case 1 (𝑐 = 1).

Since a block from the REC algorithm perfectly overlaps with

𝑍 𝑖
, exactly the same nodes in the min binary tree (with repetition)

are visited, resulting in

∑
𝑗 ∈𝑍 𝑖 𝑧 𝑗 − 𝑟 𝑗 = 0.

Case 2. [𝑐 = 2]

Here the blocks 𝑅𝑖1 and 𝑅𝑖2 split 𝑍 𝑖
into two parts. Consequently,

they split the 1 ≤ 𝑑 ≤ 𝑘 unmatched values at indices𝑢1, 𝑢2, 𝑢3, ..., 𝑢𝑑
for the BSV algorithm in 𝑍 𝑖

. Let 𝑠 be the last index of 𝑅𝑖1 where

the split occurs. Consider the most general case when the split is

strictly between two unmatched values at indices 𝑢𝑠 < 𝑠 < 𝑢𝑠+1 for

1 ≤ 𝑠 ≤ 𝑑 − 1. See Figure 2 for an example. The cases where the

split occurs before 𝑠 < 𝑢1, after 𝑢𝑑 < 𝑠 , or overlaps with some 𝑢∗
are simpler.

In the part of 𝑍 𝑖
to the left of the split, i.e., in 𝑍 𝑖 ∩ 𝑅𝑖1 , the

nonlocal matches for the BSZ algorithm are also nonlocal for the

REC algorithm. Now, there are only two places where the running

time between the two algorithms may differ. First, since 𝑟𝑢𝑠 does

not start its search in the min binary tree from where 𝑟𝑢𝑠+1 found its

match, it follows that 0 ≤ 𝑟𝑢𝑠 − 𝑧𝑢𝑠 = O(log𝑛). Second, all values
in [𝑢𝑠 + 1, 𝑠] are matched locally for the BSZ algorithm but some of

them may be unmatched for the REC algorithm. We denote these

unmatched values by 𝑅+ and establish that 0 ≤ ∑
𝑗 ∈𝑅+ 𝑟 𝑗 − 𝑧 𝑗 =∑

𝑗 ∈𝑅+ 𝑟 𝑗 = O
(
|𝑅+ | log

𝑘
|𝑅+ |

)
= O(𝑘), using the concavity of the

logarithm and that

∑
𝑗 ∈𝑅+ 𝑟 𝑗 actually corresponds to Θ(∑𝑖 log𝑛𝑖 ),

where

∑
𝑖 𝑛𝑖 ≤ 𝑘 .

Next, we consider the part of 𝑍 𝑖
after the split, i.e., 𝑍 𝑖 ∩ 𝑅𝑖2 .

If 𝑟𝑢𝑑 is not the last nonlocal match in 𝑅𝑖2 , then it is the only

place where a different number of nodes of the min binary tree

are visited, and the difference is 0 ≤ 𝑧𝑢𝑑 − 𝑟𝑢𝑑 = O(log𝑛). If 𝑟𝑢𝑑
is the last nonlocal match in 𝑅𝑖2 , then exactly the same nodes are

visited. Finally, there may be multiple unmatched values for the BSZ

algorithm that are matched locally for the REC algorithm starting

with 𝑟𝑢𝑑 . We denote these local matches by 𝑅−. As previously, we

establish that 0 ≤ ∑
𝑗 ∈𝑅− 𝑧 𝑗 − 𝑟 𝑗 =

∑
𝑗 ∈𝑅− 𝑧 𝑗 = O

(
|𝑅− | log

𝑘
|𝑅− |

)
=

O(𝑘). For the last nonlocal match at 𝑑𝑟 , if it exists, the difference is

0 ≤ 𝑟𝑑𝑟 − 𝑧𝑑𝑟 = O(log𝑛). Combining all the contributions results

in

���∑𝑗 ∈𝑍 𝑖 𝑧 𝑗 − 𝑟 𝑗
��� = O(𝑘 + log𝑛), concluding this case.
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77 1 50 54 42 98 7 8 13 18 15 21 14 27 10 29 54 30 98 12 57 18 37 28 55

𝑍 𝑖

𝑅𝑖1 𝑅𝑖2𝑅+ 𝑅−

Figure 2: Case 2 in the proof of Lemma 4, where exactly two blocks, 𝑅𝑖1 and 𝑅𝑖2 , overlap with the block 𝑍 𝑖
. The numbers that

are underlined are unmatched in their respective blocks. For example, the 𝑑 = 5 unmatched values in 𝑍 𝑖
are 7, 8, 10, 29, and 30,

and the split 𝑠 occurs strictly between the unmatched values 8 and 10 at indices 𝑢2 = 𝑢𝑠 and 𝑢3 = 𝑢𝑠+1, respectively. The values
that are unmatched in 𝑅𝑖1 but matched in 𝑍 𝑖

, are 13, 15, and 21, corresponding to 𝑅+. The values that are matched in 𝑅𝑖2 but

unmatched in 𝑍 𝑖
, are 29 and 30, corresponding to 𝑅−. The braces indicate the range where values in 𝑅+ or 𝑅− are located.

Case 3 (3 ≤ 𝑐).

Consider any block 𝑅𝑖𝑡 for 2 ≤ 𝑡 ≤ 𝑐 − 1 and the corresponding

recursive call REC(𝑥,𝑦) with 𝑦 ≤ 𝑛, which computed local matches

at 𝑅𝑖𝑡 . Since 𝑅𝑖𝑡 ⊊ 𝑍 𝑖
then

��𝑅𝑖𝑡 �� = 𝑦 − 𝑥 < 𝑘 , and all nonlocal

matches in 𝑅𝑖𝑡 match 𝐴𝑦 , by Lemma 3. For the REC algorithm,

since the search starts from index 𝑦 (line 4), no nodes are visited in

the min binary tree. For the BSZ algorithm, since 𝑦 ∈ 𝑍 𝑖
, then all

the values at 𝑅𝑖𝑡 are matched locally, and no nodes of min binary

tree are visited. Thus, the running times may differ only at 𝑅𝑖1 and

𝑅𝑖𝑐 , which is similar to the case for 𝑐 = 2.

We have now established that

���∑𝑗 ∈𝑍 𝑖 𝑧 𝑗 − 𝑟 𝑗
��� = O(𝑘 + log𝑛) for

any 1 ≤ 𝑖 ≤ ⌈𝑛/𝑘⌉. Summing over each block 𝑍 𝑖
concludes the

proof:

𝑊𝐵𝑆𝑍 = Θ

(
𝑛 +

𝑛∑
𝑖=1

𝑧𝑖

)
= Θ(𝑛) + O©­«

⌈𝑛/𝑘 ⌉∑
𝑖=1

∑
𝑗 ∈𝑍 𝑖

𝑟 𝑗 + 𝑘 + log𝑛
ª®¬

= Θ(𝑛) + O
((

𝑛∑
𝑖=1

𝑟𝑖

)
+ ⌈𝑛/𝑘⌉ (𝑘 + log𝑛)

)
= O

(
𝑊𝑅𝐸𝐶 + 𝑛

(
1 + log𝑛

𝑘

))
□

Next, we prove Lemma 5, which shows that the work to find

nonlocal matches decreases as 𝑘 increases.

Proof of Lemma 5. Wewill prove that𝑇 (𝑛) ≤ 2𝑛+
(
𝑛
𝑘
− 1

)
log𝑛

by induction. In the base case, when 𝑛 ≤ 𝑘 , 𝑇 (𝑛) = 𝑛 ≤ 2𝑛 +

(
𝑛
𝑘
− 1

)
log𝑛. For the inductive case:

𝑇 (𝑛) = 𝑘 +max

(
𝑘+1∑
𝑖=1

𝑇 (𝑛𝑖 ) +
𝑘∑
𝑖=1

log𝑛𝑖

)
≤ 𝑘 +max

(
𝑘+1∑
𝑖=1

(
2𝑛𝑖 +

(𝑛𝑖
𝑘
− 1

)
log𝑛𝑖

)
+

𝑘∑
𝑖=1

log𝑛𝑖

)
≤ 𝑘 + 2(𝑛 − 𝑘) + 1

𝑘
·max

(
𝑘+1∑
𝑖=1

𝑛𝑖 log𝑛𝑖

)
≤ 2𝑛 − 𝑘 + 1

𝑘

(
𝑘+1∑
𝑖=1

𝑛𝑖

)
log

𝑘+1∑
𝑖=1

𝑛𝑖

< 2𝑛 +
(𝑛
𝑘
− 1

)
log𝑛

□

Using Lemmas 4 and 5, it is now straightforward to bound the

work of the BSZ algorithm, which concludes the proofs of Lemma 2

and Theorem 3.

4 RANDOM INPUTS

Consider a random input where each input value is drawn indepen-

dently and identically distributed from a discrete distribution over a

totally ordered set of size𝑚. Then, the expected distance between a

value and its match (here the first smaller or equal value) is strictly

less than

∑𝑚
𝑖=1

𝑝𝑖
1∑𝑖

𝑗=1
𝑝 𝑗
. The strictness follows since the array is

bounded. For example, with a uniform distribution, the expected

distance is strictly less than 𝐻𝑚 . Thus, for 𝑚 = O(𝑝𝑜𝑙𝑦 (𝑛)) the
expected distance is Θ(log𝑛). The arguably simplest ANSV algo-

rithm is a double for-loop that scans left and right for the match

of each value in parallel. For the uniform distribution with𝑚 as

discussed earlier, this algorithm achieves expected O(𝑛 log𝑛) work.
Similarly, the work-inefficient algorithm with heuristic H2 spends

O(log𝑑) time on finding the match of a value that is at a distance

of 𝑑 from its match. Thus, using Jensen’s Inequality, it achieves

expected O(𝑛 log log𝑛) work. For this reason, we consider random
inputs to be easy.
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5 EXTERNAL MEMORY

In this section, we prove Theorems 2 and 3, which give the I/O com-

plexity of the BSV (Algorithm 2) and array-based SEQ algorithms

in the PEM model.

Theorem 2. For any 𝑃 ≥ 1, the ANSV problem can be solved on
the 𝑃-processor PEM model on an input of size 𝑛 in Θ

(
𝑛
𝑃𝐵
+ log𝐵 𝑛

)
parallel I/Os.

Proof. Set group sizes to𝑘 = Θ
(
𝐵 log𝐵 𝑛

)
and replace the binary

tree with a B-tree. Then run the same BSV algorithm in ⌈ 𝑛
𝑘𝑃
⌉ rounds,

each round processing a contiguous segment of 𝑘𝑃 elements.

The straightforward bottom-up parallel construction of the B-

tree takes O
(
𝑛
𝑃𝐵
+ log𝐵 𝑛

)
parallel I/Os. In each round, merging is

done sequentially by each processor, with each processor spending

O
(
𝑘
𝐵

)
= O

(
log𝐵 𝑛

)
I/Os per round. Finally, in each round, each

processor traverses the B-tree once, resulting in Θ
(
log𝐵 𝑛

)
parallel

I/Os per round. Combining the I/Os over the ⌈ 𝑛
𝑘𝑃
⌉ rounds results

in overall O
(
𝑛
𝑃𝐵
+ log𝐵 𝑛

)
parallel I/O complexity. □

Theorem 3. The array-based SEQ algorithm is cache-oblivious,
and for an input of size 𝑛, it uses O

(
𝑛
𝐵

)
I/Os.

Proof. The SEQ algorithm sequentially finds the left (similarly

right) matches by looping over𝐴 from left to right. It maintains the

invariant that in the 𝑖th iteration, all left matches of values 𝐴[1 : 𝑖]
have been found and are stored in the array 𝐿[1 : 𝑖]. To find the left
match of 𝐴𝑖 , the algorithm simply follows the matches previously

found in 𝐿, starting with 𝐿𝑖−1, until it finds a value 𝐴 𝑗 < 𝐴𝑖 , and

then sets 𝐿[𝑖] = 𝑗 . Given that the matches are non-overlapping (as

noted in Observation 1), this result is not too surprising.

The amortized analysis of the I/O complexity is the same as

for the number of comparisons in the RAM model [12], but with a

potential of one I/O for each block instead of the individual elements.

In particular, in the 𝑖th iteration, define the potential to be the

number of blocks currently hit by the path generated by following

the pointers starting from 𝐿[𝑖 − 1]. Without going through all the

cases, when an insertion (that is not the first in a block and itself

extends the path) causes 3 ≤ 𝑘 blocks to be visited on the path,

then the new path will hit 𝑘 − 2 fewer blocks, and the potential can

pay for the visited blocks. □

6 EXPERIMENTS

In this section, we investigate the performance of the BSZ and

BSV algorithms in practice. We show that even though the BSV

algorithm has been perceived as theoretically complicated, the code

is simple, and it achieves comparable performance to the current

state-of-the-art implementation. Our code is available online [22].

We also confirm experimentally that the heuristic introduced for

the BSZ algorithm is effective, and it significantly speeds up the

algorithm and reduces the work to be linear for a large enough 𝑘 .

6.1 Experimental setup

The experiments were run on two Intel Xeon Silver 4214 2.20GHz

12-core CPUs distributed across 2 sockets with hyper-threading

enabled, totaling 48 threads and 126GB of shared RAM. The cache

configuration included a 32K L1 cache, a 1024K L2 cache, and a

P=1 P=48

SEQ BSZ BSV BSZ BSV

Sorted 1.03 1.95 2.26 0.27 0.17

Random 3.25 4.86 7.39 0.27 0.31

Merge 1.27 2.51 2.33 0.34 0.24

RandomMerge 2.16 4.03 4.02 0.34 0.24

Table 1: Running times in seconds for the SEQ, BSZ and BSV

algorithms on the Sorted, Random, Merge and Random-

Merge inputs for 𝑃 = 1 and 𝑃 = 48. We report the average

of 5 runs, each with 𝑛 = ⌊1.735⌋ = 116335496 and block size

𝑘 = 256⌊log
2
𝑛⌋ = 6656.

16896K L3 cache. Our implementation is in C++ 17 and compiled us-

ing GCC 7.5.0 with the -O3 optimization. All inputs are of type long
(8 bytes). For parallelization, we used the ParlayLib library [7],

which supports parallel loops with parlay::parallel_for and

parlay::blocked_for. For consistency with the BSZ implemen-

tation [8, 20], we use basic arrays instead of parlay::sequences
and switched their parallel loops from using Cilk to ParlayLib.

Our simple C++ implementation of the BSV algorithm uses ∼175

lines of code, of which ∼ 90 are reused directly from the BSZ im-

plementation, which totals ∼120 lines. Both algorithms use a min

binary tree and find local matches using the SEQ algorithm. They

differ in their approach to finding nonlocal matches. The BSV al-

gorithm uses merging, while the BSZ algorithm searches within

the tree. We simplified the merging in the BSV algorithm by ig-

noring already matched elements. This contrasts with the original

description in [6] steps 6.1 and 6.2, which uses prefix and suffix

minimas to identify the unmatched values. For the SEQ algorithm,

we decided to use the array-based implementation since we found

it to be about 30% faster than the stack-based implementation.

We considered 4 different types of inputs. First, Sorted: the

of numbers 1, 2, 3, ..., 𝑛. Second, Random: a random permutation

of 1, 2, 3, ..., 𝑛. Third, Merge: the numbers 0, 2, 4, ..., ⌊𝑛/2⌋, ⌊𝑛/2⌋ +
1, ⌊𝑛/2⌋ − 1, ⌊𝑛/2⌋ − 3, ..., 1, corresponding to the reduction from

merging sorted lists to ANSV where the two sorted lists must be

perfectly interleaved (for example, 0, 2, 4 and 1, 3, 5 forming input

0, 2, 4, 5, 3, 1). Fourth, RandomMerge: similar to the Merge input,

except the two values in each consecutive pair are swapped with

probability 0.5.

6.2 Performance

In Table 1, we list the average running time in seconds for the

three different algorithms across the four types of inputs, both

for 𝑃 = 1 and 𝑃 = 48 threads, with 𝑛 ≈ 10
8
and block size 𝑘 =

256⌊log
2
𝑛⌋ = 6656. The block size is chosen to achieve Θ(𝑛) work,

and the constant 256 was determined through initial experiments. In

section 6.3, we explore the impact of the block size 𝑘 in more depth.

The Sorted input is a trivial ANSV instance and was primarily

used as a baseline to gauge how the algorithms should perform

on an easy input. In practice, it also turned out to be the fastest.

The Random input was the slowest overall for 𝑃 = 1, whereas for

𝑃 = 48, there was no decidedly slowest input type. We suspected

the slowdown was due to additional branch mispredictions, which

we investigated using the perf command. The results in Table 2
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(a) Running time in seconds normalized by 𝑛

for the SEQ, BSZ, and BSV algorithms with

𝑃 = 1.
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(b) Running time in seconds normalized by 𝑛

for the BSZ and BSV algorithms with 𝑃 = 48.
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(c) The speedup 𝑇1/𝑇𝑃 for the SEQ, BSZ, and

BSV algorithms for 𝑃 = 1, 2, 3, ..., 48.

Figure 3: For all three plots, each dot corresponds to the running time in seconds of an algorithm on the RandomMerge input.

For each input size 𝑛, we repeat the experiment 5 times and draw a line through the average of these 5 runs. In each run we

set the block size 𝑘 = 256 log𝑛 to ensure Θ(𝑛) work. For plots 3a and 3b we use a log scale and test inputs of size 𝑛 = 1.7𝑝 for

𝑝 = 1, 2, 3, ... and 𝑛 ≤ 2
27 = 134, 217, 728. The running time is in seconds normalized by 𝑛 (see the 1e-8 on the axis).

P=1 P=48

BSZ BSV BSZ BSV

Sorted 1.6 1.6 5.0 4.8

Random 258.4 425.5 267.0 437.2

Merge 1.4 1.4 4.1 4.1

RandomMerge 138.5 129.4 144.8 137.4

Table 2: Branch mispredictions in millions for the BSZ and

BSV algorithms for the same parameters as in Table 1.

provide evidence of this for 𝑃 = 1. Based on the discussion in

section 4, we decided not to focus on the random inputs in further

experiments. The behavior of the Merge input is comparable to

that of RandomMerge, experiencing only a 20-30% slowdown. We

believe the latter is the most well-motivated for three reasons. First,

it naturally occurs in the reduction from merging sorted lists to

ANSV. Second, without the heuristic, the BSZ algorithm performs

Θ(𝑛 log𝑛) work. Third, there are many far-away matches which

are the hard ones to compute. Taking inspiration from the Random

input, we added some randomness, giving us the RandomMerge

input, which, as expected for 𝑃 = 1, is 60 − 80% slower. Across

the four inputs, for 𝑃 = 48, the BSV algorithm is comparable to or

slightly faster than the BSZ algorithm.

In Figure 3, we plot increasing 𝑛 against running time in seconds

normalized by 𝑛 for each algorithm on the Merge input. In plot

3a where 𝑃 = 1, we observe a mostly flat trend as expected, since

all algorithms perform Θ(𝑛) work. Even though there is a slight

trend upward, the variance and performance of the BSZ and BSV

algorithms mimic the SEQ algorithm, which serves as a simple

baseline for what Θ(𝑛) work should look like. In plot 3b where 𝑃 =

48, both the BSZ and BSV algorithms converge nicely at around 0.26·
10
−8

seconds, with a running time of ∼0.305 seconds normalized

by 𝑛 = 116335496.

The speedup of a parallel algorithm is the ratio between its

sequential running time 𝑇1 with 𝑃 = 1 processors and its running

𝑇1/𝑇12 𝑇1/𝑇24 𝑇1/𝑇48

BSZ 8.59 10.86 11.98

BSV 8.64 11.99 13.71

Table 3: Speedup of algorithms BSZ and BSV for 12, 24, and

48 processors. Speedup is calculated as𝑇1/𝑇𝑝 , where𝑇1 is the

running time for 1 processor and 𝑇𝑝 is the running time for

𝑝 processors.

time 𝑇𝑃 with 𝑃 processors. In Figure 3 plot 3c, we plot the speedup

of the BSZ and BSV algorithms as we increase the number of threads

𝑃 = 1, 2, 3, ..., 48. The final speedup 𝑇1/𝑇48 is 11.98 and 13.71 for

the BSZ and BSV algorithms, respectively. Until around 𝑃 = 12

we observe a strong linear speedup, likely because one of the two

CPUs with 12 cores is active and no hyper-threading is activated

yet. From 12 to 24 processors, the speedup continues to increase

steadily for both algorithms. From about 24 processors onwards, the

speedup tapers off, but still increases more for the BSV algorithm

than for the BSZ algorithm. See Table 3 for the exact speedups for

𝑃 = 12 and 𝑃 = 24.

6.3 Block size

Both the BSZ and BSV algorithms use a hyperparameter 𝑘 for the

block size, where in each block local matches are found sequentially.

The primary distinction between the algorithms lies in their ap-

proach for handling the remaining nonlocal matches. This section

explores the impact of the block size 𝑘 on the different components

of the algorithms. We categorize the running time into three parts.

First, the tree part denotes the time to construct the min binary

tree for both algorithms. Second, the local part represents the time

to compute local matches in both algorithms, and for the BSV al-

gorithm, it also includes the time to set up the merging problems.

Third, the nonlocal part denotes the time spent traversing the min

binary tree to find nonlocal matches in the BSZ algorithm. For

the BSV algorithm it denotes the time spent on finding nonlocal
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(a) Running time in seconds for increasing

block size 𝑘 with 𝑃 = 1 for the SEQ, BSZ, and

BSV algorithms.
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(b) The stacked running time in seconds for

increasing block size 𝑘 with 𝑃 = 1 for the BSZ

algorithm.
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(c) The stacked running time in seconds for

increasing block size 𝑘 with 𝑃 = 1 for the BSV

algorithm.
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(d) Running time in seconds for increasing

block size 𝑘 with 𝑃 = 48.
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(e) The stacked running time in seconds for

increasing block size𝑘 with 𝑃 = 48 for the BSZ

algorithm.

101 102 103 104 105 106 107 108

block size k (log scale)

0

1

2

3

4

5

St
ac

ke
d 

(c
um

ul
at

iv
e)

 ru
nn

in
g 

tim
e 

in
 se

co
nd

s nonlocal
local
tree

(f) The stacked running time in seconds for

increasing block size𝑘 with𝑃 = 48 for the BSV

algorithm.

Figure 4: For all six plots, we measured the average running time for increasing block size 𝑘 (log scale) on the RandomMerge

input of fixed size 𝑛 = 2
27 = 134, 217, 728, repeated 5 times, and drew a line through those averages. For the three top plots 4a, 4b

and 4c we have 𝑃 = 1, and for the three bottom plots 4d, 4e and 4f we have 𝑃 = 48. In plots 4c, 4c, 4e and 4f, we show the stacked

running time in seconds for the three parts of the BSZ and BSV algorithms. The tree part denotes the time to construct the

min binary tree for both algorithms. The local part denotes the time to compute local matches for both algorithms, and for

the BSV algorithm also the time to set up the merging problems. The nonlocal part denotes for the BSZ algorithm time spent

traversing the min binary tree for nonlocal matches. For the BSV algorithm, it denotes the time spent on finding nonlocal

matches by merging.

matches by merging. All parts take Θ(𝑛) work, except for the non-
local part of the BSZ algorithm, which takes O

(
𝑛

(
1 + log𝑛

𝑘

))
time,

as given by Lemma 2. Similarly, for the BSV algorithm, the local

part takes O
(
𝑛

(
1 + log𝑛

𝑘

))
time, due to the necessity of traversing

the min binary tree twice for each block to set up the merging

problems. For the RandomMerge input, the parts depending on 𝑘

are O
(
𝑛

(
1 + log𝑛

𝑘

))
as expected. Figure 4 plot 4a clearly shows this

behavior, with the work decreasing rapidly as 𝑘 increases. Plots 4b

and 4c further confirm that it is nonlocal and local parts for the BSZ

and BSV algorithms, respectively, that decrease, and that the others

parts are independent of 𝑘 . For 𝑃 = 48, we still see an improvement

in running time for small 𝑘 in Figure 4 plot 4d. Not surprisingly, for

large 𝑘 , the running time increases dramatically, as both algorithms

solve each block sequentially.
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