
Empirical Evaluation of the Parallel Distribution

Sweeping Framework on Multicore Architectures

Deepak Ajwani1 and Nodari Sitchinava2

1 Bell Laboratories Ireland, Dublin, Ireland
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. In this paper, we perform an empirical evaluation of the
Parallel External Memory (PEM) model in the context of geometric
problems. In particular, we implement the parallel distribution sweeping
framework of Ajwani, Sitchinava and Zeh to solve batched 1-dimensional
stabbing max problem. While modern processors consist of sophisti-
cated memory systems (multiple levels of caches, set associativity, TLB,
prefetching), we empirically show that algorithms designed in simple
models, that focus on minimizing the I/O transfers between shared mem-
ory and single level cache, can lead to efficient software on current mul-
ticore architectures. Our implementation exhibits significantly fewer ac-
cesses to slow DRAM and, therefore, outperforms traditional approaches
based on plane sweep and two-way divide and conquer.

1 Introduction

Modern multicore architectures have complex memory systems involving multi-
ple levels of private and/or shared caches, set associativity, TLBs, and prefetch-
ing effects. It is considered challenging to design and even engineer algorithms to
directly optimize the running time on such architectures [16]. Furthermore, algo-
rithms optimized for one architecture may not be optimal for another. To address
these issues, various computational models [4, 8, 14, 13, 9] have been proposed in
recent years. These computational models are simple (usually assuming only two
levels of memory hierarchy, out of which one is shared) as they abstract away
the messy architecture details. Also, the performance metric of these models
involve a single objective function such as minimizing shared memory accesses.
The simplicity of these models allows the design of practical algorithms that are
expected to work well on various multicore architectures. It also allows us to
compare the relative performance of algorithms theoretically.

The success of a computation model crucially depends on how well the theo-
retical prediction of an algorithm in that model matches the actual running time
on real systems. Unfortunately so far, there has been little empirical work (such
as [21]) to evaluate the predictions of algorithmic performance using these mod-
els on real multicore architectures. It is not even clear if these models can lead
to the design of algorithms that are faster on current multicore systems (with 2
- 48 cores) than those designed in the traditional RAM model, external memory
model and the PRAM model. In fact, many of the algorithms designed in these

models for multicores seem quite sophisticated and are likely to have high con-
stant factors that can pay off only for architectures with hundreds of cores. This
state of affairs is in sharp contrast with the sequential cache-efficient models,
where a considerable empirical work (e.g., [10, 5]) evaluating the algorithms on
real systems exists.

At the core of the debate for the computational model is the choice of the
performance metric that an algorithm designer should optimize for the current
multicore systems. In the traditional RAM (and PRAM) model of computation,
the algorithms are designed to minimize the number of instructions (and parallel
instructions) executed by the algorithm. The external memory (EM) model [1]
when applied to cached memories (e.g., see [17]) aims at minimizing the cache ac-
cesses, ignoring the number of instructions. The parallel external memory (PEM)
model [4] aims at minimizing the number of parallel cache accesses.

In this work, we demonstrate that algorithms designed in simple models,
that focus on minimizing the parallel I/O transfers between shared memory
and a single level cache, can lead to a software performing great in practice on
real multicore systems. For this purpose, we consider the algorithms to solve
the problem of answering batched planar orthogonal stabbing-max queries. This
problem is a fundamental geometric primitive and together with its variants is
used as subroutines in solutions of many popular geometric problems such as
point location in an orthogonal subdivision of the plane, orthogonal ray shoot-
ing, batched (offline) dynamic predecessor queries in 1-dimensional array and
batched union-find. Also, this problem has been well-studied in various compu-
tational models and many different optimal solutions for it are known in these
models. Thus, it provides a test-bed for evaluating the efficacy of theoretical
analysis in various models on real multicore architectures. Another reason for
selecting this non-HPC application is that the ratio of memory accesses to com-
putation in the solutions of this problem is similar to that of many data-intensive
geometric applications. For instance, our engineered PEM solution for this prob-
lem is based on the parallel distribution sweeping framework and this framework
has been used for designing a wide range of other geometric algorithms in the
PEM model [2, 3] and a basis for PEM data structures [20].

We empirically compare the different solutions and show that a carefully
engineered solution based on an algorithm in the PEM model gives the best per-
formance on various multicore systems, outperforming traditional approaches
based on plane sweep, sequential distribution sweeping and two-way divide-and-
conquer. Using hardware profilers, we show that this solution exhibits signif-
icantly fewer number of accesses to slow DRAM which is correlated with the
improved running time.

Since the cache line on modern systems is typically 64 bytes, I/O-efficient
solutions also need to be work-efficient to compete with RAM algorithms. In
other words, the total number of instructions should match that of RAM solu-
tions. Therefore, we design both I/O- and work-efficient algorithm. To the best
of our knowledge, this is the first work-efficient I/O-optimal algorithm for this
problem.

2

2 Computational Models

External Memory Model. The widely used external memory model or the
I/O model by Aggarwal and Vitter [1] assumes a two level memory hierar-
chy. The internal memory has a limited size and can hold at most M objects
(points/line-segments) and the external memory has a conceptually unlimited
size. The computation can only use the data in the internal memory, while
the input and the output are stored in the external memory. The data trans-
fer between the two memories happens in blocks of B objects. The measure
of performance of an algorithm is the number of I/Os (cache misses) it per-
forms. The number of I/Os needed to read n contiguous items from the external
memory is scan(n) = Θ(n/B). The number of I/Os required to sort n items
is sort(n) = Θ((n/B) logM/B(n/B)). For all realistic values of n, B, and M ,
scan(n) < sort(n) < n log2 n.

Parallel External Memory (PEM) Model. The parallel external mem-
ory (PEM) model [4] is a simple parallelization of the EM model. It consists of P
processors, each with a private cache of sizeM (see Figure 1). Processors commu-
nicate with each other through access to a shared memory of conceptually unlim-
ited size. Each processor can use only data in its private cache for computation.

B

B

Shared memory

Cache

CPU 2

M/B

Cache

CPU P

M/B M/B

Cache

CPU 1

Fig. 1: The PEM model

The caches and the shared memory are
divided into blocks of size B. Data
is transferred between the caches and
shared memory using parallel input-
output (I/O) operations. During each
such operation, each processor can trans-
fer one block between shared memory and
its private cache. The cost of an algo-
rithm is the number of I/Os it performs.
Concurrent reading of the same block by
multiple processors is allowed but concur-
rent block writes are disallowed (similar
to a CREW PRAM). The cost of sorting

in this model is sortP (n) = O
(

n
PB logM/B

n
B

)

parallel I/Os, provided P ≤ n/B2

and M = BO(1) [4].

The PEM model provides the simplest possible abstraction of current mul-
ticore chips, focusing on the fundamental I/O issues that need to be addressed
when designing algorithms for these architectures, similar to the I/O model [1]
in the sequential setting.

3 1-D Stabbing Max Algorithms

In this section, we describe various algorithms that we implemented and used
for our experimental study. We begin with formally describing the problem.

3

Definition 1 (Batched 1-D Stabbing-Max Problem). Given a set of n
horizontal line segments and points on the plane, report for each point the closest
segment that lies directly below it.

RAM algorithm. In the classical RAM model, this problem is solved using
the sweep line paradigm [18, 6]. We sweep a hypothetical vertical line across the
plane in increasing x-coordinate and perform some computation at each segment
endpoint or query point. We maintain an ordered set A of active segments — all
segments which intersect the sweep line, ordered by the y-coordinates. A segment
is inserted into A when the sweep line encounters its left endpoint and removed
when it encounters the right endpoint. An answer to a query point q is the
segment in A with the largest y-coordinate that is smaller than the y-coordinate
of q, i.e., the predecessor of q in A according to the y-ordering.

For n line segments and query points, there are O(n) insertions, deletions
and predecessor searches in A. Since each of these operations can be performed
in O(logn) time by maintaining A as a balanced binary search tree, the total
complexity of this algorithm is O(n logn) instructions.

Sequential I/O-optimal solution. The sequential I/O-efficient solution
for this problem proceeds using the distribution sweeping framework of Goodrich
et al. [15] as follows.

Let rq be a variable associated with each query point q which we will use to
store the answer. Initially rq is initialized to a virtual horizontal line y = −∞.

We partition the space into K = min{M/B, n/M} vertical slabs σ1, . . . , σK ,
so that each slab contains equal number of points (endpoints of horizontal
segments or query points) and perform a sweep of the input by increasing y-
coordinate. During the sweep we maintain for each slab σi a segment sσi

which
is the highest segment that spans σi encountered by the sweep. When the sweep
line encounters the query point q ∈ σi, we update rq with sσi

iff y(sσi
) > y(rq).

During the sweep we also generate slab lists Yσi
. A copy of a query q (resp.,

segment s) is added to Yσi
if q (resp., at least one of the endpoints of s) lies in

slab σi. The sweep is followed by a recursive processing of each slab, using Yσi

as input for the recursive call. The recursion terminates when each slab contains
O(M) points and the problem can be solved in internal memory, for example,
by using the plane sweep algorithm.

Note, that if the initial objects are sorted by y-coordinates, we can generate
the inputs Yσi

for the recursive calls sorted by y-coordinate during the sweep.
Thus, the sweep at each of O(1+logK(n/M)) recursive levels takes O(n/B) I/Os
and the total I/O complexity of distribution sweeping is O

(

n
B (1 + logK n/M)

)

=
sort(n) I/Os.

Work-optimal solution. Note that a naive implementation of the sweep in
internal memory might potentially result in updating K different variables sσi

whenever a segment is encountered during the sweep. This could lead to O(Kn)
instructions at each recursive level, resulting in total O(Kn logK n) instructions,
which is larger than O(n log2 n) instructions of the plane sweep algorithm. At
the same time, the plane sweep algorithm could result in up to O(n log2 n) I/Os,
which is larger than sort(n) I/Os of the above algorithm.

4

To achieve optimal internal computation time while maintaining the optimal
sort(n) I/O complexity we store segments sσi

in a segment tree T over K inter-
vals defined by the slabs σi. Since, we are interested only in segments that fully
span the slabs, each segment is stored only in one node. Also, at each node we
store only the highest segment encountered up to that point in the sweep. Thus,
|T | = O(K), i.e. T fits in internal memory. Consider the nodes on the root to leaf
path which correspond to the intervals containing q. We update rq to the high-
est segment stored at these nodes. Thus, maintaining T and updating rq takes
O(log2 K) instructions per update/query, and over O(1 + logK N/M) recursive
levels of distribution sweeping adds up to at most O(n log2 n) instructions, which
is optimal.

Parallel External Memory Solution. The PEM solution is based on
the parallel distribution sweeping framework introduced by Ajwani et al. [2].
It differs from the sequential distribution sweeping by recursively dividing the
plane into K := max{2,min{

√

n/P,M/B, P}} vertical slabs3 and performing
the sweep in parallel using all P processors. During recursion, the slabs are
processed concurrently using sets of Θ(P/K) distinct processors per slab. The
parallel recursion proceeds for O(logK P) rounds, until there are Θ(P) slabs
remaining, at which point, each slab is processed concurrently using a single
processor running the sequential I/O-efficient solution.

To perform the sweep of a single recursive level in parallel using multiple
processors, each processor performs distribution sweeping on an equal fraction
of the input. Note, that such a sweep sets the values of rq correctly only if
both the query q and the spanning segment sσi

below it are processed by the
same processor. To correct the values rq across the boundaries of the parallel
sweeps we perform a round of parallel reduction on segments and queries using
MAX associative operator [7]. Finally, we compact the portions of slab lists Yσi

generated by different processors into contiguous slab lists to be used as input
for recursive calls. The details of the algorithm follow directly from [2] but are
also presented in Appendix A for completeness.

The parallel I/O complexity of the above algorithm is O(sortP (n)) I/Os.

Work-optimal solution. Similar to the sequential I/Omodel, we can achieve
work optimality in the PEM model algorithm by maintaining a segment tree T
on the K child slabs. In this case, all processors keep their own copy of T and
the parallel reduction (using MAX operator) is performed over not only the K
leaves, but also the K−1 internal nodes of T . This does not affect the asymptotic
number of parallel I/Os, but makes the scheme work-optimal, i.e. O(n

P logn) in-
structions per processor.

2-way Distribution Sweeping. As a PRAM solution, we consider a recur-
sive 2-way distribution sweeping algorithm. This framework is akin to divide-
and-conquer paradigm, that is archetype for many PRAM algorithms. The 2-
way distribution is continued recursively till the slab size is smaller than a fixed
constant and at that stage, plane sweep algorithm is used as a base case. The

3 The explanation for this choice of K can be found in [4].

5

distribution step is a simplified version of the corresponding step in the PEM
algorithm, as the considerations of work-optimality no longer apply.

4 Implementation Details

We implemented our algorithm in C++, using OpenMP for parallelization. The
engineered implementation uses some simple techniques to improve the running
time of the theoretical algorithm, while trying to preserve its worst-case asymp-
totic guarantee on the number of shared cache accesses.

The parallel distribution sweeping calls for setting the branching parameter
at K = max{2,min{M/B,

√

n/P, P}}. The parameter M also defines the size
of the recursive base case. We experimentally determine the best choice of M .
In particular we found that setting M to be a large fraction (e.g., 1/3 or 1/4) of
the L3 cache results in best running times.

Having determined M , we observe that for computing K, in our compute sys-
tems the number of processors (up to 48) is far below the other two terms. Thus,
the first recursive level is always a single P -way parallel distribution sweeping
round, which results in P vertical slabs each of which can be processed indepen-
dently of others in the consequent phases. Thus, after the parallel distribution,
each of P resulting vertical slabs is assigned to a separate thread which processes
it using a sequential distribution sweeping algorithm.

To perform the parallel sweep, we divide the input based on the y-coordinate
among the P threads, conceptually, assigning a horizontal slab of objects to
each thread. The thread with the smaller ID gets the lower y values. This can be
viewed as a P × P matrix where the columns correspond to the different slabs
and the rows correspond to the different threads.

We perform the prefix sum on the P ×P array sequentially as the overheads
associated with the synchronization barrier of OpenMP are too high to justify
this operation in parallel.4

We combine the second scan of the data (due to reduction) with the step
of compacting child slab lists into contiguous vectors. During the compaction,
each processor pj copies all partial chunks of child slab σj into the contiguous
space. Note, the propagation of the results of the prefix sums simply needs to
update the result of each query point that had been assigned the sentinel line
y = −∞ with the result of the prefix sums value. Thus, the propagation of the
prefix sums values can be performed during this copying process.

Next, we process the P child slabs in parallel using sequential distribution
sweeping. This recursively subdivides the slabs till the pre-specified threshold M
is reached. When generating the input lists for the child slabs, we also store the
total number of segments and query points for the child slabs. If for any slab,
either the number of segments or query points is zero, we do not process it or
its child invocations any further.

4 In our experiments, performing this step sequentially takes less than a millisecond,
while the overall running time is in dozens or hundreds of seconds.

6

Space efficiency.We carefully engineered our algorithms to reduce the space
requirement of our implementations considerably. This is done while ensuring
that the running time of our implementations is not affected by the space reduc-
tion. We provide more details of this in Appendix B.

Randomized vs. deterministic computation of slab boundaries. De-
terministic identification of slab boundaries such that all the child slabs at each
level of recursion contain the same number of objects, requires sorting the input
based on the x-coordinate and storing O(n/M) equally spaced entries of the
sorted input in a separate array. We avoid the extra sort by instead determining
the slab boundaries by partitioning the space into uniform vertical slabs. This
optimization works well for random input, but in the worst case can result in
the recursion depth as large as O(logK δ), where δ is the spread of the point set
– the ratio between the largest and the smallest (horizontal) distance between
a pair of points. In case of a large base case of the recursion and randomized
input, this is not an issue. But in the case of double precision coordinates, the
worse case analysis dictates that the depth of the recursion can be very large.

Constant factors vs. EM implementation. The I/O complexity of the
sequential distribution sweeping framework is O(n/B(1 + logK n/M)), where
K = min{M/B, n/M}. Since in our experimental settings K = n/M , there are
only 2 recursive levels: one for distribution sweeping and one for the sweep line
at the base case. Thus, the implementation perform two sequential scans of the
input.

In the parallel version, we have to perform two additional scans. Specifically,
we perform one extra recursive step – the parallel distribution. During this step,
each processor scans n/P items and writes them out into its private child slabs.
After the prefix sums, which takes negligible amount of time, we must (a) propa-
gate the result of the prefix sums to the queries that contain only sentinel values
as the result and (b) construct each child slab in contiguous space. As described
earlier, we combine these two tasks into a single scan.

Thus, combined with the two scans of the parallel recursive invocation of the
sequential distribution sweeping, the parallel implementation performs a total
of four scans of the input, i.e., twice as many as the sequential version. Since
all scans are performed in parallel and in expectation each child slab contains
equal number of items, the total I/Os performed by each processor is 2/P times
the number of sequential I/Os, and (ignoring the speedup due to faster parallel
internal computation) we should expect the speed up of P/2 on P processors.

Sorting. To perform the initial sorting of the input by the y-coordinate, we
used the sorting implementation from the C++ Multicore Standard Template
Library (MCSTL) [19] that is now part of the GNU libstdc++ library. For the
base case of plane sweep algorithm, we use the C++ Standard Template Library
(STL) sorting implementation.

Choice of P . While in theory, P denotes the number of cores, there are
many considerations involved in picking the correct value of the parameter P in
practise. These considerations are discussed in Appendix C.

7

5 Experiments

We performed extensive experimentation studying the performance of these al-
gorithms on various input types and on many different multicore architectures.
In addition to measuring the running time of these algorithms, we used papi

library and the Linux perfctr kernel module to read the hardware performance
counters and measure cache misses, DRAM accesses, TLB misses, branch mispre-
dictions, number of instructions etc.. This section summarizes the key findings
of our experiments.

Our query points were generated uniformly at random inside the grid of size
Grid Size×Grid Size. To elicit the asymptotic worst case performance of point
location algorithms, we focus on long segments, whose length is chosen uniformly
at random between Grid Size/4 and 3 · Grid Size/4 and are at a random y-
coordinate.

Configuration. We ran our implementation on the following multicore sys-
tems:

1. A system with a single 4-core 2.66 GHz Intel Core i7-920 processor and a
total of 12.3GB RAM. Each core can run 2 threads due to hyperthreading.
The processor has an L3 cache of size 8192 KB that is shared among all 4
cores. The L2 cache of 256 KB is only shared among pairs of cores.

2. A system with 4× 12-core 1.9 GHz AMD Opteron 6168 processors and total
of 264 GB of RAM. Each core contains a private L2 cache of 512 KB and
groups of 6 cores share an L3 cache of 5118KB. Thus, each processor contains
two L3 caches of combined size of just over 10MB.

3. A system with 2 x 16-core 2.6 GHz AMD Opteron 6282 SE processors and
total of 96 GB RAM. Each core has its private L2 cache while the L3 cache
is shared between 16 cores. The L2 cache size is 2 MB and L3 cache size is
16 MB.

All configurations run Linux kernels and the codebase was compiled using
g++-2.4 compiler and -O3 flag.

Spatio-temporal locality in our setting. The cache line size for all cache
levels on all 3 systems is 64 bytes. Since our objects take 32 bytes of space,
it appears that each cache line can hold only two objects. Therefore, at a first
glance it is not clear if I/O efficient algorithm can utilize the spatial locality for
any improvement in runtime. However, we observed that given an array that
is too large to fit in cache and which contains our 32-byte objects, it takes 4-
5 times faster to access the objects sequentially rather than performing access
in random locations. This observation can be explained by the fact that the
memory system prefetches 2-3 cache lines when performing a sequential scan.
Thus, during sequential scan the prefetcher amplifies the size of the cache line
by the number of lines being prefetched.5

5 For this experiment, the array must contain the actual objects and not just pointers
to the objects, which could be allocated anywhere in memory.

8

2

4

6

8

10

12

14

16

0.4 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Plane sweep
Sequential I/O

Dist Sweep (P = 2)
Dist Sweep (P = 3)
Dist Sweep (P = 6)

Dist Sweep (P = 12)

1

2

3

4

5

0.4 12.8 25.6 38.4 51.2

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Plane sweep
Sequential I/O

Dist Sweep (P = 2)
Dist Sweep (P = 3)
Dist Sweep (P = 6)
Dist Sweep (P = 8)

Fig. 2: Runtimes on the configuration 2 (left) and configuration 1 (right) per element.
The plots exclude the times to perform initial sorting of inputs by the y-coordinate for
distribution sweeping and x-coordinate for the plane sweep.

Another benefit of performing K-way distribution sweeping is that it allows
us to utilize temporal locality by reducing the number of recursive calls. In par-
ticular, K is chosen as K = min{n/M,M/B} and the number of recursive levels
is (1+logK(n/M)). Given limit of RAM size on our systems and the large size of
L3 cache, it appears from our experiments that K is set to n/M on configuration
1 and 2, resulting in a single recursive level dedicated to (sequential) distribution
(with the recursive base case performing plane sweep on chunks that fit in L3
cache). On configuration 3, it requires two recursive calls. The various trade-
offs involved in selecting the correct values of parameters K and M and the
effect of these parameters on the actual run-time of our PEM implementation
are described in Appendix D.

Random access vs. I/O-efficient algorithms. Figure 2 shows the abso-
lute running times for the plane sweep and (parallel) distribution sweeping algo-
rithms. One can see improvements in runtimes with the increase in the number
of processors used. Also note the difference in the slopes in the graphs of the
plane sweep algorithm compared to distribution sweeping algorithms. This is
due to larger asymptotic number of cache misses of the plane sweep algorithm.

Figure 3 demonstrates this difference better. It shows the speedup of the
sequential and parallel distribution sweeping algorithms relative to the plane
sweep algorithm for long segments. In this figure one can see the effects of cache-
efficiency on runtimes. It clearly shows that the I/O-efficient algorithms outper-
form the plane sweep algorithm as the input sizes increase. Recall our discussion
that for the parameters of our systems K = n/M and the I/O complexity of the
distribution sweeping algorithm is O((n/B)(1 + logK n/M)) = O(n/B). This
explains the non-linear asymptotic speedup over plane sweep algorithm (with
I/O complexity of O((n/B) logn/M)) as a function of the input size.

Figure 4 shows the speedup that parallel distribution sweeping algorithm
achieves relative to the sequential distribution sweeping algorithm.

PRAM vs. PEM performance. Figure 5 (left) shows the comparative
performance of the various algorithms on configuration 3. We observe that the
PRAM implementation is significantly slower than the PEM algorithm. For in-

9

 0

 5

 10

 15

 20

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

S
p
e
e
d
-u

p

n (in millions)

Speed-up relative to plane sweep

Plane sweep
Seq I/O

P=2
P=3
P=6

P=12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

S
p
e
e
d
-u

p

n (in millions)

Speed-up relative to plane sweep

Plane sweep
Seq I/O

P=2
P=3
P=4
P=6
P=8

Fig. 3: Speedup of the distribution sweeping algorithms relative to the plane sweep
algorithm on the configuration 2 (left) and configuration 1 (right). The plots exclude the
times to perform initial sorting of inputs by the y-coordinate for distribution sweeping
and x-coordinate for the plane sweep.

 0

 1

 2

 3

 4

 5

 6

 7

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

S
p
e
e
d
-u

p

n (in millions)

Speed-up relative to sequential I/O algorithm

Seq I/O
P=2
P=3
P=6

P=12

 0

 1

 2

 3

 4

 5

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

S
p
e
e
d
-u

p

n (in millions)

Speed-up relative to sequential I/O algorithm

Seq I/O
P=2
P=3
P=4
P=6
P=8

Fig. 4: Speedup of the parallel distribution sweeping algorithms relative to the se-
quential distribution sweeping algorithm on configuration 2 (left) and configuration 1
(right) systems. The plots exclude the times to perform initial sorting of inputs by the
y-coordinate.

0.5

1

1.5

2

2.5

0.4 12.8 25.6 38.4 51.2

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

PRAM
PEM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08
 0
 1e-06
 2e-06
 3e-06
 4e-06
 5e-06
 6e-06
 7e-06
 8e-06
 9e-06
 1e-05

D
R

A
M

 a
c
c
e
s
s
e
s
 p

e
r

e
le

m
e
n
t

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 s

e
c
)

n

Time and DRAM accesses per element for long segments

DRAM Accesses (planesweep)
DRAM Accesses (PRAM, P=12)

DRAM Accesses (dist sweep, P=1, 12)
Runtime (planesweep)

Runtime (dist sweep, P=1)
Runtime (PRAM, P = 12)

Runtime (dist sweep, P = 12)

Fig. 5: Comparison of PEM and PRAM algorithms on 16 cores of configuration 3 is
shown in the left figure. Running time and DRAM traffic for long segments on 12 cores
of configuration 2 in the right.

stance, with 51.2 million segments and the same number of queries, PRAM
implementation takes 96 seconds with 16 cores, while the PEM implementation
only requires 30 seconds with the same number of cores (excluding the time for

10

loading the input and sorting it, which is 18 seconds for both implementations).
This is largely accounted for by the fact that the PRAM implementation makes
poor use of temporal locality and thus, has larger number of recursive levels. In
each recursive level, it scans all the segments and query points, increasing the
DRAM accesses significantly.

DRAM Accesses and Cache Misses. We could not find a reliable way to
measure only L3 cache misses: the papi library does not support measurement
of shared cache events, while the hardware counters for LLC (Last Level Cache)
counters returned suspiciously similar results to L2 cache misses. Instead we
measured the total traffic to DRAM using perf tool. Figure 5 (right) shows
a clear correlation between the total DRAM traffic and running times. It is
interesting to note that although our algorithms are designed in simple 2-level
cache model, they minimize the total traffic to DRAM, in spite of complex nature
of modern memory systems.

Random, short, medium and long segments. We refer the reader to
Appendix E for the relative behavior of the different point location algorithms
on different segment types.

6 Conclusions And Future Work

In this work, we explored the effects of caches on actual run-times observed
on various multicore architectures in the context of the geometric stabbing-max
query problem. This is used to understand how well the PEMmodels the running
time of algorithms on current multicore architectures. On single-socket multicore
architectures, our results show a direct correlation between traffic on DRAM
memory controller and running times of implementations. Thus, the algorithms
designed I/O-efficiently via the (parallel) distribution sweeping framework out-
perform the plane sweep algorithms which do not address the I/O-efficiency.

While the PEM model captures the intricacies of single-socket architectures
remarkably well, it is probably not the right one to model NUMA effects arising
from multiple sockets. NUMA effects might be better modeled by distributed
computational models, where each processor copies/moves data into “local”
memory — address space associated with its socket — before processing it. Once
the data is in its “local” memory, one can use the PEM model to design algo-
rithms to process the data. The experimental evaluation and modeling NUMA
effects of multi-socket architectures is left for future investigations.

While we chose to implement an algorithm which was designed in the PEM
model, it would be interesting to see how the implementations in other cache-
conscious parallel models (for example, [8]) will fare in practice in similar setting.

Acknowledgments. We would like to thank Peter Sanders for encourag-
ing to look at the work-optimality of PEM algorithms. We would also like to
thank Dennis Luxen and Dennis Schieferdecker for their extensive help with our
implementations and getting perf and papi to run on our systems.

11

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

2. Ajwani, D., Sitchinava, N., Zeh, N.: Geometric algorithms for private-cache chip
multiprocessors. In: ESA (2010)

3. Ajwani, D., Sitchinava, N., Zeh, N.: I/O-optimal distribution sweeping on private-
cache chip multiprocessors. In: IPDPS. pp. 1114–1123 (2011)

4. Arge, L., Goodrich, M.T., Nelson, M.J., Sitchinava, N.: Fundamental parallel al-
gorithms for private-cache chip multiprocessors. In: SPAA. pp. 197–206 (2008)

5. Bender, M.A., Farach-Colton, M., Fineman, J.T., Fogel, Y.R., Kuszmaul, B.C.,
Nelson, J.: Cache-oblivious streaming B-trees. In: SPAA. pp. 81–92 (2007)

6. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers 28(9), 643–647 (Sep 1979)

7. Blelloch, G.E.: Prefix sums and their applications. In: Reif, J.H. (ed.) Synthesis of
Parallel Algorithms, pp. 35–60. Morgan Kaufmann Publishers (1993)

8. Blelloch, G.E., Chowdhury, R.A., Gibbons, P.B., Ramachandran, V., Chen, S.,
Kozuch, M.: Provably good multicore cache performance for divide-and-conquer
algorithms. In: SODA. pp. 501–510 (2008)

9. Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Simhadri, H.V.: Scheduling irregular
parallel computations on hierarchical caches. In: SPAA. pp. 355–366. ACM (2011)

10. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivious sorting
algorithm. ACM Journal of Experimental Algorithmics 12 (2007)

11. Chiang, Y.J.: Experiments on the practical I/O efficiency of geometric algorithms:
Distribution sweep vs. plane sweep. Tech. rep., Providence, RI, USA (1995)

12. Chiang, Y.J.: Experiments on the practical I/O efficiency of geometric algorithms:
distribution sweep versus plane sweep. Comput. Geom. Theory Appl. 9(4), 211–236
(Mar 1998)

13. Chowdhury, R.A., Ramachandran, V.: The cache-oblivious gaussian elimination
paradigm: Theoretical framework, parallelization and experimental evaluation. In:
SPAA. pp. 71–80 (2007)

14. Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming for
multicores. In: SPAA. pp. 207–216 (2008)

15. Goodrich, M.T., Tsay, J.J., Vengroff, D.E., Vitter, J.S.: External-memory compu-
tational geometry. In: FOCS. pp. 714–723 (1993)

16. Kang, S., Ediger, D., Bader, D.A.: Algorithm engineering challenges in multicore
and manycore systems. IT - Information Technology 53(6), 266–273 (2011)

17. Mehlhorn, K., Sanders, P.: Scanning multiple sequences via cache memory. Algo-
rithmica 35, 75–93 (2003), 10.1007/s00453-002-0993-2

18. Shamos, M.I., Hoey, D.: Geometric intersection problems. In: FOCS. pp. 208–215.
IEEE Computer Society (1976)

19. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template
library. In: Euro-Par. Lecture Notes in Computer Science, vol. 4641, pp. 682–694.
Springer (2007)

20. Sitchinava, N., Zeh, N.: A parallel buffer tree. In: SPAA. pp. 214–223 (2012)

21. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
pochoir stencil compiler. In: SPAA. pp. 117–128 (2011)

12

A Details of the PEM solution

In this section we present the details of the PEM solution.

As mentioned earlier, our algorithm is based on the parallel distribution
sweeping framework introduced by Ajwani et al. [2]. Parallel distribution sweep-
ing recursively divides the plane into vertical slabs, starting with the entire
plane as one slab and in each recursive step dividing a given slab into K :=
max{2,min{

√

n/P ,M/B, P}} child slabs. This division is chosen so that each
slab at a given level of recursion contains roughly the same number of objects
(segment endpoints and query points). The first level of recursion divides the
plane into P slabs, each containing Θ(n/P) input elements. Viewing the recur-
sion as a rooted tree defines leaf invocations and children of a non-leaf invocation.
An invocation on slab σ at the kth recursive level is denoted as Ikσ .

Each invocation Ikσ receives as input a y-sorted list Y k
σ containing segments

and query points. The root invocation I0
R2 contains all segments and query

points of the input and the input Y 0
R2 is generated by sorting the horizontal

segments and query points by the y-coordinate. For a non-leaf invocation Ikσ ,
let Ik+1

σ1
, Ik+1

σ2
, . . . , Ik+1

σK
denote its child invocations. The input Y k+1

σj
for a child

invocation Ik+1
σj

consists of the y-sorted list of segments in Y k
σ with an endpoint

in σj and the query points in σj . In processing Ikσ , we consider all the children
slabs of σ: σ1, σ2, . . . , σK and compute a segment lqσj

∈ Y k
σ for all query points

q ∈ σj , that is the highest segment lower than q and spans σj . If l
q
σj

is higher
than rq, we let rq := lqσj

. Thus, rq always stores the highest segment lower than
q that spans σj (and all its parent slabs).

At every leaf invocation Ikσ , the highest segment below the query points are
found using sequential I/O-efficient distribution sweeping technique as described
in the previous section. This is then compared to the current stored value rq and
the maximum of the two values is stored in rq.

To compute the values of lqσi
for all child slabs, we process them using the

P processors as follows: We partition the input sets Y = ∪iY
k
σi

into P equal
chunks Y1, Y2, . . . , YP based on the y-coordinate, each one of size Θ(n/P). Then,
processor pj processes Yj using the sequential I/O-efficient algorithm indepen-
dently of others. Note, that this process sets the initial values of sσi

to l−∞ –
a virtual horizontal line y = −∞. Thus, if at the end of the process lqσi

= l−∞

for some query q ∈ Yj and there is a segment s ∈ Yk, k < j such that s lies
below q, then lqσi

is still not set correctly. To fix this, at the end of sequential
sweep by each processor pj , pj saves the values of sσi

for each of its slabs. These
values are then processed by all processors in a way similar to segmented prefix
sums to propagate the values of sσi

to the appropriate processors as follows. As-
sume, the segment identifiers of segments increase with the increase in segments’
y-coordinates. Now consider K independent prefix sums with max as the asso-
ciative operator applied on the K ·P values of sσi

(one prefix sums on the values
within a single slab). Finally, we initialize the value of sσi

at each processor pj
to the final value (after the prefix sums) of sσi

at processor pj−1 (in case of p0,
sσi

= l−∞ for all σi) and repeat the sequential sweep by each processor. Note,

13

the purpose of the prefix sums is to propagate the values of last seen segment
across multiple processors and after the second sweep, all lqσi

are set correctly.

The parallel I/O complexity of the above algorithm is O(sortP (n)) I/Os.

B Data representation and space efficiency of our

implementations

We implement the segments and queries as a single vector of objects. To achieve
this, we represent each line segment and query point with a single 32-byte struc-
ture as follows. Using double precision for the coordinates, we need 16 bytes to
represent a point on a plane. Additional 8 bytes are used for each segment to
represent the x-coordinate of the second endpoint or for each query to record the
y-coordinate of the segment below it as an answer. Additional 4 bytes are used
for the identifier of each segment (we do not assume that segments have unique
y coordinates, and therefore, they cannot be identified with this ID field). The
same field entry is used for recording the segment ID of the output for a query.
Finally, we need at least one boolean value for distinguishing a segment from a
query. However, since memory allocation in C++ is aligned at 4 byte memory
intervals, the last field of the structure takes up at least 4 bytes. While keeping
segments and points as a single object type might cost extra 4 bytes of memory
for each item, this approach has the advantage of simplifying computations and
internal data structures for the slabs as we no longer need to keep separate lists
for query points and line-segments, but can keep a single sorted list.

Let s be the number of segments in the input and q be the number of query
points in the input, i.e., n = s + q. The sequential distribution sweeping can
be implemented to use space taken up by up to 3s + 2q objects. This number
arises from the fact that during distribution we might create up to two copies of
each segment (one for each end point) to be placed into child slabs. In addition
the distribution at each recursive level cannot be performed in place and, hence,
we need to allocate additional 2s + q memory during the process. In practice
to achieve this bound, one needs to know exactly how many objects will be
distributed to each child slab. This would require an additional pass over the
data to count the the sizes of each child slabs, increasing the running time by
a factor of 2. Instead, we use dynamic arrays (e.g., vectors in C++ STL) which
grow automatically when the data exceeds the preallocated capacity. During the
resizing, the contents of vectors are copied over into the newly allocated vector,
seemingly resulting in the same double the running time. However, copying a
vector is performed using low level memory copying routines which are more
efficient than traversing the input twice. In addition, we utilize the fact that
we run our experiments on uniformly distributed data. By allocating 10% more
space than 1/K-th fraction of the total data to be distributed to K children,
with high probability no child exceeds the preallocated space.

14

C On the right choice of P

The PEM model prescribes algorithms for an architecture which contains a pri-
vate cache per processor connected with an independent channel to the shared
memory. The PEM algorithms measure the number of parallel I/Os performed.
If the bandwidth of channels is fully utilized, increasing the number of processors
without increasing the number of memory channels would not result in reduced
parallel I/Os. In reality, modern multicores have much fewer memory channels
than there are cores so an interesting question is whether it is beneficial to
increase the number of processors beyond the number of memory channels.

The Intel i7 system contains 3 memory channels and implements hardware
counters which record overall DRAM accesses per each channel. Interestingly,
throughout the computation, one of the channels recorded no DRAM accesses,
while the other two channels shared the traffic to DRAM unevenly. The discrep-
ancy in traffic load between the two channels decreased with higher number of
cores used. We cannot explain the reason why the system did not use all memory
channels and this is worth further investigations.

We could not measure the bandwidth utilization of the memory channels.
However, we did measure the IPC – an average number of instructions executed
per clock cycle. The results showed IPC on the Intel i7 system being close to 1
regardless of number of cores used for the distribution sweeping implementation.
However, for the planesweep implementation the IPC dropped down to .7 for
large inputs. This leads us to believe that the random access of planesweep
results in inefficient use of the memory bandwidth. At the same time full cache
line transfers of the distribution sweeping implementation barely saturates the
memory channels even with all 4 cores running 2 threads each.

D Effect of parameters K and M on runtime.

Figure 6 shows how much each task takes as a fraction of total runtime as we
vary the threshold parameter M . One can see that by reducing M down to the
L2 cache size results in faster combined execution time of all invocations of the
plane sweep algorithm at the base case of the recursion. This is due to the fact
that the binary search tree T used for the plane sweep algorithm fits in the faster
L2 cache.

However, this decrease in runtime of the base case is offset by the increase in
the runtime of the distribution sweeping phase due to the following reason. Recall
that K = min{n/M,M/B}. If K = n/M , larger value of M results in increase of
K – the number of slabs to distribute the objects at each recursive level. While
the number of slabs is still small enough to fit in cache, and, therefore, there is no
increase in cache misses, the time it takes to identify the slab where to distribute
each item takes O(logK) internal computation time, i.e. it grows with K. If, on
the other hand, M decreases so much that K = M/B, the number of recursive
levels grows as a function of logK(n/M). Thus, decrease in K results in more
recursive levels which in turn results in more scans of the input and, therefore,
more (capacity) cache misses.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

8K 16K 32K 64K 128K

F
ra

c
ti
o
n

M

Running time of components as a fraction of total runtime

load input
y-sort

distribution
plane sweep

Other

 0

 0.2

 0.4

 0.6

 0.8

 1

8K 16K 32K 64K 128K 256K

F
ra

c
ti
o
n

M

Running time of components as a fraction of total runtime

load input
y-sort

distribution
plane sweep

Other

Fig. 6: Task break-down as a percentage of the total running time for a sequential
distribution sweeping on the AMD Opteron 6168 with n = 102.4 · 106 objects (left)
and Intel i7 with n = 51.2 · 106 objects (right). The different tasks are (a) loading the
input from file, (b) initial sorting of the input by y-coordinate, (c) total time taken by
distribution of of objects into child slabs, (d) total time take by plane sweep algorithm
at the base of the recursive calls and (e) misc. bookkeeping not included in all of the
above.

We also observed that setting M equal to exactly the size of a cache does not
result in the best runtimes. This can be explained by the more complex nature
of caches, such as set associativity and the replacement policy: the external
memory model assumes fully associative cache with optimal replacement policy,
while modern architectures implement set-associative caches with (most likely)6

the Least Recently Used (LRU) replacement policy. To achieve the best results
we set M to a quarter of the L3 cache size for the Intel i7 architecture and a
third of the L3 cache size for the AMD Opteron architectures.

Since the caches are shared among subsets of processors, in case of the parallel
execution, our initial intuition was to reduce M by the number of processors
sharing the cache. However, our experiments showed that this is unnecessary
and the same M as for the sequential implementation works just as well in the
parallel implementation.

This can be explained by the fact that in our experiments, K = n/M which
constitutes a much smaller portion than the L3 cache. Therefore, during the
parallel distribution sweeping, maintaining one block for each child slab in cache
and maintaining for each processor the tree T ′ of size 2 · K for work-optimal
distribution sweeping does not interfere with other processors’ cache data.

E Effect of segment type on the performance of point

location algorithms

To analyze the behavior of our algorithms on segments of varying lengths, we
first generate the line-segments in different ways:

6 It is hard to determine the true replace policy because processor manufacturers keep
this information confidential.

16

Random segments: Our first input set is a set of random line-segments
in the grid. The random lines are generated by selecting a random y-coordinate
and two random x-coordinates in the grid. Thus, the expected length of the line
segments is O((Grid Size)).

Short segments: Here, n line segments are generated with length chosen
uniformly at random between Grid Size/n and 4 ·Grid Size/n.

Medium segments: Here, n line segments are generated with length chosen
uniformly at random between Grid Size/

√
n and 4 ·Grid Size/

√
n.

Long segments: Here, we generate line segments with lengths chosen uni-
formly at random between Grid Size/4 and 3 ·Grid Size/4.

2

4

6

8

10

12

14

0.4 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Random
Long

Medium
Short

2

4

6

8

10

12

0.4 12.8 25.6 38.4 51.2

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Random
Long

Medium
Short

Fig. 7: Runtimes for small, medium, long and randomly sized segments for the plane
sweep on AMD Opteron 6168 (left) and Intel i7 (right) systems as a function of input
size.

0.5

1

1.5

2

2.5

0.4 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Random
Long

Medium
Short

0.5

1

1.5

2

2.5

0.4 12.8 25.6 38.4 51.2

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Random
Long

Medium
Short

Fig. 8: Runtimes for small, medium, long and randomly sized segments for the sequen-
tial distribution sweeping on AMD Opteron 6168 (left) and Intel i7 (right) systems as
a function of input size.

In Figures 7 through 9 one can see how different sizes of segments affect
the running times of our different implementations. We observe that the plane
sweep (Figure 7) performs much worse on the long segments than on the short
segments. This is because the expected number of short segments intersecting

17

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4 12.8 25.6 38.4 51.2

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Random
Long

Medium
Short

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 12.8 25.6 38.4 51.2

T
im

e
 p

e
r

e
le

m
e
n
t
(i
n
 m

s
e
c
)

n (in millions)

Running time per element

Random
Long

Medium
Short

Fig. 9: Runtimes for small, medium, long and randomly sized segments for the parallel
distribution sweeping on AMD Opteron 6168 (left) and Intel i7 (right) systems as a
function of input size. The results are for the maximum number of threads for each
system.

any vertical line is expected to be constant and the set of active segments A fits in
cache at all times. Thus, the updates and predecessor queries on A do not incur
any additional cache misses. On the other hand, the number of long segments
intersecting any vertical line is expected to be linear with the input size and the
traversal of T will incur a lot of cache misses. Contrast this with the runtimes for
sequential (Figure 8) and parallel (Figure 9) distribution sweeping algorithms
for the different segment sizes, which show much smaller variance of runtimes
as a function of different segment lengths. This confirms that the results that
Chiang [11, 12] observed 17 years ago still hold on modern architectures.

18

