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Abstract
We consider the problem of placing a small number of angle guards inside a simple polygonP so as to provide efficient
proofs that any given point is insideP . Each angle guard views an infinite wedge of the plane, and a point can prove
membership inP if it is inside the wedges for a set of guards whose common intersection contains no points outside
the polygon. This model leads to a broad class of new art gallery type problems, which we call “sculpture garden”
problems and for which we provide upper and lower bounds. In particular, we show there is a polygonP such that a
“natural” angle-guard vertex placement cannot fully distinguish between points on the inside and outside ofP (even
if we place a guard at every vertex ofP ), which implies that Steiner-point guards are sometimes necessary. More
generally, we show that, for any polygonP , there is a set ofn + 2(h− 1) angle guards that solve the sculpture garden
problem forP , whereh is the number of holes inP (so a simple polygon can be defined withn−2 guards). In addition,
we show that, for any orthogonal polygonP , the sculpture garden problem can be solved usingn

2 angle guards. We
also give an example of a class of simple (non-general-position) polygons that have sculpture garden solutions using
O(
√

n) guards, and we show this bound is optimal to within a constant factor. Finally, while optimizing the number
of guards solving a sculpture garden problem for a particularP is of unknown complexity, we show how to find in
polynomial time a guard placement whose size is within a factor of2 of the optimal number for any particular polygon.



1 Introduction
Art gallery problems are classic in Computational Geometry and much has been written about them (e.g., see [16, 17,
20]). The main objective in such problems is to place a small number of points inside a polygonP so that this set of
points can see all ofP . Motivated by realistic angles of vision that actual guards would have, of particular interest are
art gallery problems involvingangle guards(also known as “floodlights” [9]), which study the number of angles of
measure at most180◦ that are sufficient to seeP .

From the standpoint of a pointp in the plane, an angle guardg can be viewed as a Boolean predicate,Bg(p), which
is true if p is inside the angle associated withg and is false otherwise. Given the polygonP , we are interested in a
placement of angle guards in, around, and outsideP in such a way that we can define a monotone1 Boolean formula,
F (p), built from the angle-guard predicates,Bg(p), so thatF (p) is true if and only ifp is insideP . Moreover, we desire
that the number of angle guards needed to define such a formula be small, since there may be a non-trivial expense in
deploying such a collection of guards. Thus, this problem can be viewed as a kind of art gallery problem [16, 17, 20],
where it is not sufficient that the guards merely see all of the art gallery, but instead they must collectivelydefinethe
geometry of the art gallery. More specifically, this problem can be viewed as a “sculpture garden” problem, where the
guards and the formulaF distinguish the space of the sculpture garden from the surrounding land (without the use of
walls or fences). For example, in Figure 1 since polygon edges don’t block the signals from the guards, the area near
vertexc is defined by the two guardsc andd.
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Figure 1: Illustrating the sculpture garden problem. (a) an example7-vertex polygonP ; (b) a set of4 angle guards
that solve the sculpture garden problem forP . The Boolean formula in this case isF = abd + cd = d(ab + c).

Ideally, we would like the formulaF to beconcise, meaning that the values ofO(1) Bg(p)’s always suffices to
prove thatF (p) is true for any pointp insideP . There is a security dimension to this problem, in that we wish to
prove that a pointp is insideP using only angle-guard predicates. For example, if Johnny’s mother calls him on his
cell phone, he should be able to prove to her that he is inside the sculpture garden simply by telling her what a small
number of angle guards seeing him are wearing. No point outside ofP should be able to construct a proof that it is
insideP , which is the main issue that differentiates this problem from previous geometric guarding problems. For
example, ifF were in disjunctive normal form (DNF), that is,F was a disjunction of conjunctive clauses, and each
clause inF contained a constant number of angle-guard predicates, thenF would be concise.

Incidentally, this new kind of art gallery problem was featured in the most recentSIGACT NewsComputational
Geometry column of O’Rourke [?], based on a preliminary version of this paper.

1.1 Motivating Applications
In the sculpture garden problem, the polygonP is a “virtual” object, defined by the formulaF , not a physical object
with “walls” for sides. The polygonP could, for example, be painted on the floor2. Motivation for such problems
comes, for example, fromlocalization problems in wireless mobile computing (e.g., see [6]), where we wish to
determine with certainty the position of a wireless device in a geometric environment. Such localization problems are
typically facilitated bylocators, which are wireless base stations placed at fixed locations that aid the wireless devices
to determine their positions. Sculpture garden problems could be used, for example, in a localization problem where

1A Boolean formula is monotone if it contains only AND (·) and OR (+) operators; hence, has no NOT operations.
2There is, in fact, aStar Trek(Original Series) episode, “The Gamesters of Triskelion,” where three members of the Enterprise crew must fight

three adversaries while staying inside a yellow non-convex polygon painted on the floor.
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we are asked to deploy a collection of locators in what can be viewed as a two-dimensional space so that a wireless
device canprovethat it belongs to a given polygonal environment. In this case, the locators would be simple, fixed base
stations that can each broadcast information inside a certain angle, such that devices outside of the broadcast angle for
a station cannot receive the transmissions from that station. Such guards could be realized physically using angular
RF antennas (if the environment has no RF reflectors), by IR transmitters with angular shields, or even visible/LASER
light transmitters with angular shields. In this context, the boolean predicates, could be associated with secret keys, so
that each angle guardg could periodically broadcast a secret keyK in its transmission angle, so that only a wireless
device in this angle would have knowledge of this key (in which case a zero-knowledge non-interactive proof-of-
knowledge ofK would suffice as a certificate thatBg(p) is true).

Another motivating application comes fromconstructive solid geometry(CSG), where we wish to construct a
geometric shape from simple combinations of simple primitive shapes (e.g., see [8]). Solutions to the sculpture guard
problem can be used, for example, to construct an efficient CSG formula that defines a given polygonP (possibly
using fewer primitive shapes than the size ofP ). In addition, a concise solution to the sculpture garden problem for
P could be used, together with a point-location data structure [?] for the interior ofP , to output inO(log n) time an
O(1)-sized point-in-polygon proof for any given pointp insideP 3.

1.2 Related Prior Work
Localization is becoming an important topic in wireless mobile computing, where a number of research teams are
interested in solutions that avoid the use of GPS, which has a number of practical drawbacks. For example, Bulusu
et al. [3] study how RF strength and angle can be used for sensor localization, and Savvideset al. [18] show how to
improve the consistency of such an approach by iterative algorithms. Alternatively, Howardet al. [14] use a potential-
field based approach and Chakrabartyet al. [4] use a grid-based technique for deploying locators. On the other hand,
Heet al. [13] use a random deployment and use point-in-triangle tests to determine location based on audible signals.

Of considerable relevance, of course, is prior work on using directional antennas in wireless communication net-
works. For example, Ko and Vaidya [15] discusses how to use base stations with directional antennas (as in our angle
guards) to improve network protocols, but they assume that the mobile agents already know their locations. Bao and
Garci-Luna-Aceves [1], on the other hand, use directional antennas for adaptively discovering connection directions
in an ad hoc network. We are not familiar with any existing prior work, however, that uses directional antennas for
localization itself. Nevertheless, using the results of our paper as a combinatorial justification, a companion paper [6]
addresses the implementation issues of using locators with directional antennas for mobile device localization.

As mentioned above, art gallery problems are a classic topic in Computational Geometry and much has been
written about them (e.g., see [16, 17, 20]). The starting point for this related research is a result of Chvátal [7]
that bn/3c point guards are sufficient and sometimes necessary to be able to fully see a simple polygon havingn
vertices. More related to the topic of this paper, “prison yard” problems [10, 16, 17, 20] seek a set of guards that can
simultaneously see both the interior and exterior of a simple polygon, in which casedn/2e guards are sufficient and
sometimes necessary [10]. Relating to angle guards, Estivill-Castroet al. [9] show that vertex angle guards (which
they call “floodlights”) with angles of180◦ are sufficient to see any simple polygon and there are polygons such that
any fixed angle less than this will not. Likewise, Steiger and Streinu [19] and Boseet al. [2] study the complexity
of illuminating wedges with angle-restricted floodlights placed at a fixed set of points. Unfortunately, solutions to art
gallery or prison yard problems do not translate into solutions to sculpture garden problems like the ones we study in
this paper, since we are interested in more than simply seeing the inside and outside of a polygon—we wish to prove
when a point is inside a polygon using only the guards as witnesses.

Even more related to the topic of this paper is prior work on finding a CSG representation of a simple polygon, since
CSG representations can be used to prove polygon containment. Dobkinet al. [8] describe a method for constructing
a formulaF that defines a simple polygon using primitives that are halfplanes defined by lines through polygonal
edges, so that each halfplane is used exactly once. Using our terminology, this is equivalent to a formulaF for a
set ofn angle guards, with each guard placed on an edge of the polygon with a180◦ degree angle defined by the
edge. Such a formula would not, in general, be concise, however. More recently, Walker and Snoeyink [21] study the
problem of using polygonal CSG representations,a la Dobkin et al. [8], for performing point-in-polygon tests. They
experimentally consider several interesting heuristics for improving the efficiency of such tests, by “flattening” the

3Indeed, we give the details for such a data structure construction in the full version of this paper.
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CSG tree defined by the formula, but they are not able to produce proofs that are guaranteed to be concise in the sense
of this paper. Likewise, Goodrich [12] shows how any CSG formula tree can be transformed into an equivalent DAG
of depthO(log n), but this again is not sufficient to guarantee conciseness in the sense of this paper (in that we desire
constant-depth formulas).

Of course, one can always triangulate [5] any polygon,P , and use two angle guards to define each of the resulting
n + 2(h− 1) triangles, whereh is the number of holes inP . This would give rise to a concise formulaF for defining
P , but it uses at least2n + 4(h− 1) angle guards, which is much higher than we would like. Thus, the challenge is to
find polygon-defining formulas that use fewer thann angle guards and are preferably also concise.

1.3 Our Results
In this paper, we present a number of results concerning the kinds and number of angle guards needed to define
various polygons (we usen throughout to refer to the number of vertices of a given polygon). Specifically, we show
the following:

1. Define anatural angle-guard vertex placement to be one where we place each angle guard at a vertex of the
polygon with the angle of that vertex as the angle of the guard (as in Figure 1). We show there is a polygon
P such that a natural angle-guard vertex placement cannot fully distinguish between points on the inside and
outside ofP (even if we place a guard at every vertex ofP ). This negative result implies that there are cases
when we must use Steiner points or Steiner angles for sculpture garden problems.

2. We show that, for any polygonP , there is a set ofn + 2(h− 1) angle guards and an associated concise formula
F for solving the sculpture garden problem forP , whereh is the number of holes inP (so a simple polygon
can be defined withn− 2 guards).

3. We observe that, for any convex polygonP , there is a natural angle-guard vertex placement such thatdn/2e
guards are sufficient to solve the sculpture garden problem forP , and we show this bound is optimal for any
general-position polygon (for which no two edges belong to the same line).

4. We show that, for any orthogonal polygonP (which is probably the most likely real-world application), the
sculpture garden problem can be solved usingn

2 natural angle guards. Together with the above result this bound
is tight for orthogonal polygons.

5. We show how any solution to the sculpture garden problem can be made concise with a small blow-up in the
number of guards.

6. We give an example of a class of simple (non-general-position) polygons that have sculpture garden solutions
usingO(

√
n) guards, and we show this bound is optimal to within a constant factor.

7. We show how to find a guard placement whose size is within a factor of2 of the optimal number for any
particular polygon.

Thus, we feel this paper begins an interesting new branch of work on polygon guarding problems.

2 Natural Angle-Guard Placements
As defined above, anatural angle-guard vertex placement is one where we place each angle guard at a vertex of the
polygon with the angle of that vertex as the angle of the guard. (See Figure 2a.)

b d
a e

c

(a) (b)
Figure 2: Natural angle-guard placements. (a) examples of natural angle-guard vertex placements for convex and
reflex angles of a polygon; (b) an example polygon that cannot be defined using a natural angle-guard placement, for
the point,p, inside the polygon cannot be distinguished from the point,q, outside the polygon.
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A natural angle-guard placement has an obvious aesthetic appeal. Unfortunately, the sculpture garden problem
cannot be solved using natural guards for some polygons.
Theorem 1. There is a pentagonP such that it is impossible to solve the sculpture garden forP using a natural
angle-guard vertex placement.

Proof. Let P be the pentagon illustrated in Figure 2b, and letp be the highlighted point inside ofP and letq be the
highlighted point outside ofP . Then the natural guards cannot distinguish between the two points,p andq. For natural
guardsa ande, both points are outside the angles they cover, while, for guardsb, c andd, both points are inside the
angles which they cover. That is,Bx(p) = Bx(q), for x = a, b, c, d, e. Therefore, any formula built using predicates
Bx, for x = a, b, c, d, e, will have identical values onp andq. Sincep andq are on opposite sides of the boundary
of P , this implies that it is impossible to solve the sculpture garden problem forP using a natural angle-guard vertex
placement.

This theorem implies that some sculpture garden solutions must use Steiner points or Steiner angles. Nevertheless,
for orthogonal polygons, natural guard placements suffice as will be shown in Section 5.3.

3 An Upper Bound For Arbitrary Polygons
In this section we show that the sculpture garden problem can be solved for anyh-hole polygon with at mostn+2(h−
1) guards and a concise formula. To prove this bound we need to establish some preliminary results presented in the
following lemmas.
Lemma 1. The sculpture garden problem can be solved with two guards for any tetragon (quadrilateral).

Proof. If the tetragon is convex, place the two natural angle-guards in any two opposite corners. If the tetragon has a
reflex vertex, place one natural angle-guard in the reflex vertex and the other in the opposite vertex (see Figure 3). The
conjunction of the two angle guards defines the tetragons in each case.

Figure 3: Solutions for the sculpture garden problem for tetragons.

Lemma 2. The sculpture garden problem can be solved with three guards for any pentagonP .

Proof. Consider a tetragonT which fully contains the pentagonP and shares at least3 consecutive edges ofP . (We
show later how to findT .) By Lemma 1 we can solve the sculpture garden problem for the tetragonT using exactly2
guards.

Now, sinceT shares3 consecutive edges ofP , it means that at least4 vertices ofP lie onT or, equivalently, there
is at most1 vertexv ∈ P that does not lie onT . That means that there are at most2 edges ofP which lie insideT
and which might not have been covered by guards. To complete the solution to the sculpture garden problem, place a
natural angle guard at vertexv (If there is no such vertex, i.e. only1 edge is not covered by the guards, it means that
the pentagonP is convex and we can place a natural angle guard on either of the vertices incident on such an edge).

The final solution to the sculpture garden problem on the pentagon will be the conjunction of all the guards placed
for a total of3 guards.

To complete the proof we now describe how to find the tetragonT which fully contains the pentagonP and shares
at least3 edges with it. Consider the convex hullH of P .

• If H consists of5 vertices (i.e.P is convex), pick any4 edges ofH. T is the tetragon which is constructed
by the intersection points of the lines on which those4 edges lie (see Figure 4(a)). Note that3 vertices of the
tetragon will be shared with the original pentagon.

• If H consists of4 vertices, thenT is equal toH.
• If H consists of3 vertices, then there are two cases to consider:

4



1. Two edges of the pentagonP are also edges ofH. Note that the two edges have to be adjacent sinceP
is a pentagon. LetABCDE be the pentagonP with verticesA, B, andE comprising the vertices of
the convex hullH (see Figure 4(c)). Consider the edgeBE ∈ H which is not part of the pentagonP .
Of the two pentagon verticesC,D 6∈ H at least one of them can be connected to bothB andE without
intersectingP . Without loss of generality letD be such a vertex. Since each one ofC andD are adjacent
to either vertexB or E, one of the segmentsDB or DE is also an edge of the pentagonP (in our example
DE ∈ P ). Then the desired tetragonT consists of the pentagon edgesAB,AE andDE as well as the
segmentDB. As desired,T fully contains the pentagonP (no edge ofT intersectsP ) andT shares3
consecutive edges ofP (AB,AE andDE in our example).

2. Only one edge of the pentagonP is also an edge ofH. Let ABCDE be the pentagonP with ACE being
the convex hullH (see Figure 4(d)). Pick one of the two verticesB,D 6∈ H. Without loss of generality
let us pick vertexB. The desired tetragonT consists of the pentagon edgesAE, AB andBC and the
edgeCE of the convex hullH. Note, that the two vertices which are not on the convex hull (B andD in
our example) will never be adjacent if the convex hull shares only1 edge with the pentagon. Thus, both
neighbors of each of those vertices are the vertices of the convex hull. Therefore, the two rays originating
from those vertices and shooting along the edges of the pentagon (BA andBC in our example, since we
pickedB) don’t intersect the pentagonP . Thus, the tetragonABCE fully contains the pentagonP and
shares3 consecutive edges (AE, AB andBC) as desired.

A
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D

E
F
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D
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B
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A E
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B D

(a) (b) (c) (d)

Figure 4: Various pentagonsP = ABCDE, as well as the corresponding convex hullsH and the containing tetragons
T : (a) H = ABCDE, T = ABCF ; (b) T = H = ABDE; (c) H = ABE, T = ABDE; (d) H = ACE,
T = ABCE. The corresponding solutions for the sculpture garden problem is the conjunction of all the guards
placed.

Lemma 3. The sculpture garden problem can be solved with at most 4 guards for any hexagon.

Proof. Any hexagon whose dual graph of the triangulation is not a star graph or whose triangulation can be modified
to have a non-star dual graph, can be split into two tetragons each of which (by Lemma 1) can be solved with two
angle guards for a total of four. Thus, the only interesting case is when a hexagon has a single triangulation and its
dual graph is a star graph.

Let H be such a hexagon and consider its triangulation (see Figures 5 and 6). Since this is the only triangulation,
combining any pair of triangles produces non-convex tetragons. (If that wasn’t the case, we could combine two
triangles into a convex tetragon and switch the diagonal to obtain a different triangulation, which would violate the
assumption of the uniqueness of the triangulation.) Consider triangleBDF which corresponds to the center vertex of
the dual star graph. The lines on which the edges of the triangleBDF lie partition the plane into6 regions. For all
pairs of adjacent triangles to construct a non-convex tetragon it must be true that the verticesA, C andE lie in one of
the three shaded regionsR1, R2 or R3. Since at most2 of these vertices can lie in the same shaded region, there are
two cases to consider:

1. Each vertexA, C andE lie in its own region (Figure 5(a)). The verticesB, D andF are all reflex vertices and
the rays originating at these vertices and shooting along the edges of the polygon intersect each other only at the
polygon verticesA, C andE. Thus, the conjunction of natural angle guards placed at the reflex vertices of the
polygon (a total of3) will define the polygon (See Figure 5(b)).

2. Two of the three verticesA, C, E lie in the same region. Without loss of generality letA andC lie in the
same regionR2 and vertexE lie in regionR3 (Figure 6(a)). Rays originating at verticesA andC and shooting
along the edges of the polygon all intersect the polygon edgeDF . Consequently, they will all intersect edge
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Figure 5: An example of a hexagon with each of the verticesA, C andE in their own region (a) and the corresponding
solution for the sculpture garden problem (b).

EF and will never intersect edgeDE except at vertexD. Thus, the polygon defined by the conjunction of
two natural angle guards at verticesA andC and an edge guard4 on the edgeEF is fully contained inside the
hexagonH. Moreover, the only part of the hexagon that is not covered by the above3 guards is a part of triangle
DEF near the vertexE. Since we already have an edge guard at the edgeEF we can cover the whole triangle
DEF by placing one additional angle guard at vertexD whose wedge is defined by the raysDF andDE (See
Figure 6(b)). Thus, a total of4 guards is sufficient to guard this hexagon.

C
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R 2

R1
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R 2
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R 3

D

F

B

(a) (b)

Figure 6: An example of a hexagon with two verticesA andC in the same region (a) and the corresponding solution
for the sculpture garden problem (b).

Lemma 4. Any polygonP with more than three vertices can be partitioned into a collection of tetragons, pentagons
and at most one hexagon whose dual triangulation tree is star-shaped.

Proof. Consider a dual spanning tree of a triangulation of the polygonP , which is necessarily a degree-three tree. If
the tree is a two-, three- or star-shaped four-node tree, we are done because the corresponding polygon is a tetrahedron,
a pentagon or a hexagon.

If there are more than four nodes in the tree or the four-node tree is not star-shaped, recursively trim the tree in the
following way. Pick a leafv such thatv’s neighboru has one of the following properties:

1. u has degree2 andu’s neighborw 6= v is not a leaf.
2. u has degree3 andexactly oneof u’s other neighborsw, z 6= v is also a leaf. Without loss of generality, letw

be an internal node, i.e. not a leaf.
(Note, unless the tree is one of the base cases, a leafv with one of the two properties always exists because the tree is
a binary one.)

If u has property1, then removev andu from the tree and add the tetragon, associated with the removed two
nodes of the tree into the collection. Ifu has property2, then removeu, v, andz from the tree and add the pentagon
associated with the removed three nodes of the tree into the collection.

Continue the trimming until the tree is a two-, three- or star-shaped four-node tree. At each step we removed a
tetragon or a pentagon from the polygonP . Since we were removing only leaves with their (common) neighbors at
each step, the tree stays connected throughout the trimming process. Therefore, the star-shaped four-node tree could
have emerged only at the end of the trimming process, i.e. there will be only one hexagon.

There cannot be a single triangle left after the partitioning for the following reason. A single triangle corresponds
to a single node in the dual tree. If there is any single node left after the trimming process it would bew. However, in
both properties1 and2 nodew is not a leaf and, therefore, cannot be the only node left after the trimming.

4An edge guardis an angle guard with a180◦ angle defined by the edge on which it is placed.
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Therefore, we can always partition the polygon into a collection of tetragons, pentagons and at most one hexagon
with a star-shaped dual triangulation tree.

Theorem 2. n + 2(h− 1) guards are sufficient to solve the sculpture garden problem with a concise formula with the
length of the proof certificate at most three for any polygon withh holes.

Proof. Consider a triangulation of the polygon. Partition the polygon into the collection of tetragons, pentagons and
at most one hexagon as in Lemma 4. Each tetragon will consist of two triangles and by Lemma 1 can be covered
by two guards. Each pentagon will consist of three triangles and by Lemma 2 can be covered by three guards. The
hexagon (if there is one) will consist of four triangles and by Lemma 3 can be covered by four guards. Thus, the
number of required guards will be the same as the number of triangles in the triangulation, which isn + 2(h − 1).
The formula for the whole polygon will be the disjunction of the formulas for each of the smaller polygons, which (by
Lemmas 1, 2, and 3) are conjunctions of length at most three. Thus, each proof certificate will be at most of length
three.

4 Lower Bounds
In this section we discuss some lower bounds for sculpture garden problems. We begin with the theorem which
establishes a lower bound on the number of guards for arbitrary polygons.
Theorem 3. At leastdn

2 e guards are required to solve the sculpture garden problem for any polygon with no two
edges lying on the same line.

Proof. Assume less thandn
2 e guards can guard a particular polygon. Then there exists an edgee which is not collinear

with any of the guards’ boundary lines of the angle which they guard. This implies that there exists a non-empty region
R which is fully located on one side (inside or outside) of each guard’s guarded region and such that edgee splitsR
into two subregionsR1 andR2. Without loss of generality assumeR1 is inside the polygon andR2 is outside the
polygon. Then no guard can distinguish whether a point is inR1 andR2, i.e., no guard can distinguish between points
inside and outside the polygon. Thus, less thandn

2 e guards cannot guard a polygon.

Theorem 3 provides a general lower bound on the number of guards for an arbitrary general-position polygon. For
non-general-position polygons the following lower bound applies.
Theorem 4. Anyn-sided polygon requiresΩ(

√
n) guards.

Proof. If a polygonP is defined byg angle guards, thenP can have at mostg(2g−1) polygon vertices, as each vertex
occurs at the intersection of two of the2g rays bounding guard regions.

5 Polygon Classes that Require Fewer thann− 2 Guards
In this section we consider classes of polygons for which the general upper bound ofn−2 guards for arbitrary polygons
can be considerably improved.

5.1 Convex Polygons
We begin with an observation that, for convex polygons, onlydn

2 e guards are required to solve the sculpture garden
problem.
Theorem 5. dn

2 e guards are always sufficient to solve the sculpture garden problem for any convex polygon by placing
the natural angle-guards in every other vertex of the polygon.

Proof. Each natural angle-guard guards a region which fully contains the polygon. The intersection of these regions
is the convex hull of the polygon, which is the polygon itself, since it is convex. Thus, the conjunction of the guards
placed in every other corner of the convex polygon will define the polygon itself.

Together with the general lower bound on the number of guards, the above theorem shows thatdn
2 e is a tight

bound on the number of guards required to solve the sculpture garden problem for convex polygons. The formula is
not concise, of course, but we show in Section 6 how to make it concise with a small blow-up in the number of guards.
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5.2 Polygons with a Sublinear Number of Guards
We now present a class of polygons for which a square-root number of guards is sufficient to solve the sculpture garden
problem, providing an upper bound within a constant factor of the lower bound of Theorem 4.
Theorem 6. There existn-sided simple polygons that can be guarded concisely byO(

√
n) guards in a natural vertex

placement.

Proof. Form a line arrangement in the form of a grid with4k horizontal lines and4k vertical lines, and letP be a
polygon with boundaries that zigzag between pairs of vertical lines in the grid, as shown in Figure 7. With such a
construction we can form a vertex ofP at every arrangement vertex except for some of the vertices on the top and
bottom horizontal lines of the arrangement, soP hasΩ(k2) vertices; by finding the next larger polygon of this form
and then simplifying it we can find for anyn a polygon withn vertices, the edges of which belong to a grid with
k = O(

√
n). We place16k guards, one on each side of each line of the arrangement (using natural angle guards

placed at vertices). Using these guards, we can separately guard each rectangle of the arrangement, and henceP , with
four guards per point.

Figure 7: An example polygon that can be defined withO(
√

n) angle guards.

A natural question raised by this example is whether it is always possible to find an angle-guard placement that
minimizes the number of guards for a particular polygon. Although we leave this as an open problem, we show in the
next theorem that we can always achieve a2-approximation for this problem.
Theorem 7. For any polygonP , we can find in linear time a collection of guards forP , using a number of guards
that is within a factor of two of optimal.

Proof. For each halfplane for which a portion of the boundary of the halfplane is used as one of the boundary edges
of P , place an edge guard on the line bounding the halfplane, and construct the Peterson CSG formula [8] forP . In
any collection of guards forP , each such halfplane must be guarded by one of the two rays from one of the guards, so
the optimal number of guards is at least half the number of guards used.

5.3 Orthogonal Polygons
We now consider the case when the input is a polygon with axis-parallel sides (i.e., anorthogonal polygon). Note that
for ann-sided orthogonal polygon,n must always be even: there are exactly as many horizontal edges as there are the
vertical ones.

Definexy-monotonepolygon to be an orthogonal polygon which is monotone with respect to thex = y line. We
call the vertices of the polygon tangent to thex = y line theextreme vertices. Note that thexy-monotone polygon
has alternating convex and reflex vertices with the exception of the extreme points. Intuitively,xy-monotone polygon
looks like a staircase descending from upper left corner to the lower right one (see Figure 8).
Theorem 8. n

2 guards are always sufficient to guard anxy-monotone polygon.

Proof. Place the natural angle guards at every reflex vertex of the polygon as well as the extreme vertices. Such
placement puts a guard in every other vertex for a total ofn

2 . The guards at the extreme vertices define the bounding
box of the polygon, while the guards at the reflex vertices ”carve out” the shape of the staircase.

The resulting formula for the polygon is the conjunction of all the guards.
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Using definitions from [16], call a horizontal edge of an orthogonal polygontop edge if the interior of the polygon
lies below it andbottomedge if the interior lies above it.Leftandright edges are defined similarly.

top edge

right edge

extreme vertexbottom edge

left edge

extreme vertex

Figure 8:xy-monotone polygon with guards placed in every other vertex.

Lemma 5. Place natural angle guards in every other vertex of an orthogonal polygonP . The following statements
are equivalent:

1. Top edges have guards at their left end points
2. Left edges have guards at their top end points
3. Right edges have guards at their bottom end points
4. Bottom edges have guards at their right end points

Moreover, if any of the above statements holds for a single edge, it holds for all the edges of that type.

Proof. 1 ⇒ 2 and1 ⇒ 3; 2 ⇒ 1 and2 ⇒ 4; 3 ⇒ 1 and3 ⇒ 4; 4 ⇒ 2 and4 ⇒ 3.

Theorem 9. n
2 natural angle guards are always sufficient to solve the sculpture garden problem for any orthogonal

polygonP .

Proof. Pick a top edgee and place a natural angle guard at its left end point. Place natural angle guards in every other
vertex after that. By Lemma 5, since condition 1 holds for edgee, all four conditions of Lemma 5 hold for all edges.
The claim is that these guards are sufficient to solve the sculpture garden problem forP . The proof is by induction on
the number of reflex vertices of the polygon which do not have guards in them, call themunguarded reflex vertices.

Base case: The guards are placed in every other vertex, every reflex vertex has a guard in it, and conditions of
Lemma 5 are satisfied. It is easy to verify that these conditions imply that the polygon isxy-monotone and since the
placement of the guards in the polygon is exactly as it is in the proof of Theorem 8, it follows that the polygon can be
guarded using the placed guards.

Inductive hypothesis: Assume guards placed in every other vertex with the conditions of Lemma 5 satisfied are
sufficient to solve the sculpture garden problem for any polygon which has less thank unguarded reflex vertices. We’ll
show how to solve the sculpture garden problem for a polygonP with k unguarded reflex vertices.

Pick any unguarded reflex vertexv. Considerv’s neighboring verticesp andq. Since we placed guards in every
other vertex andv doesn’t have a guard, then there must be guards inp andq. Let v′ be the intersection of the polygon
boundary with the ray originating fromp and containing the segmentpv. The edgepv′ splits P into two smaller
polygons each with at mostk − 1 unguarded reflex vertices. Of the two resulting polygons consider the one whose
interior lies on the same side of the edgepv′ as the interior of polygonP with respect to the edgepv. Using Lemma 5
it is easy to verify thatP ′ has guards in every other vertex and the conditions of Lemma 5 still hold. SinceP ′ has
at mostk − 1 unguarded reflex vertices, by the inductive hypothesis we can guardP ′ without adding any additional
guards (see Figure 9(a)). Similarly, we can guard the polygonP ′′ resulting from extending ray fromq and containing
the segmentqv (see Figure 9(b)).

SinceP = P ′ ∪ P ′′, the formula forP is defined as the disjunction of formulae for polygonsP ′ andP ′′.

Combining the above result and Theorem 3 we get the following result for orthogonal polygons.
Theorem 10. n

2 guards are sometimes necessary and always sufficient to solve the sculpture garden problem for
orthogonal polygons.
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(a) (b)
Figure 9: Illustration of reducing the sculpture garden problem to two smaller subproblems.

6 Conciseness Trade-offs
The formula we provided for convex polygons in the proof of Theorem 5 is optimal as far as the number of required
guards goes. However, it is not concise; in fact, the proof certificate is as long as the formula itself, i.e.dn

2 e. This is
far from the desiredO(1) bound for conciseness provided with other polygons in this paper. The following theorem
provides a trade-off between the number of required guards and the conciseness of the formula.
Theorem 11. Let P be a polygon taken from a class of polygons that is closed under partitioning via diagonals and
such thatn-vertex polygons of this class can be defined withf(n) angle guards. Then there is a concise solution to
the sculpture garden problem forP that usesO(nf(c)/c) guards, wherec is the maximum desired size of a proof a
point is insideP .

Proof. TriangulateP . If P is not simple, then add diagonals so that the dual to the triangulation is a treeT . Perform a
recursive centroid decomposition [11] ofT , stopping as soon as a subtree has size at mostc. Each cut ofT corresponds
to our adding diagonals toP and this entire process introducesO(n/c) subpolygons (of the same class asP ), each of
size at mostc. Thus, each subpolygon can be defined withf(c) angle guards, and we can define a concise formula for
P that is the disjunction of the formulas for the subpolygons.

For example, we can produce a concise guarding of a convex polygonP usingdn/2e(1 + ε) guards so that any
point can prove it is insideP usingO(1/ε) guards, for any constantε > 0.

7 Conclusion
In this paper, we introduced the sculpture garden problem for placing angle guards in such a way as to define a polygon
P and prove when points are insideP . We presented a number of results concerning the kinds and number of guards
needed to define various polygons. We provided then − 2 upper andn

2 lower bounds for general polygons. We also
provided several classes of polygons which require substantially fewer guards than the general upper bound. We feel
this paper begins an interesting new branch of work on polygon guarding problems and hope that it will inspire future
work in this direction.
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[7] V. Chvátal. A combinatorial theorem in plane geometry.J. Combin. Theory Ser. B, 18:39–41, 1975.

[8] D. P. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink. An efficient algorithm for finding the CSG representation of a
simple polygon.Algorithmica, 10:1–23, 1993.

[9] V. Estivill-Castro, J. O’Rourke, J. Urrutia, and D. Xu. Illumination of polygons with vertex lights.Information Processing
Letters, 56:9–13, 1995.
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